The resistivity of each layer constituting a 2μm GaSb-based laser is measured with Van der Pauw method. The operation temperature of GaTe doping source is optimized for lower resistivity. The series resistance contribution of each layer is calculated. A new laser structure is designed, 65% of the optical field distributes in quantum wells and waveguide layers while the series resistance is reduced to 0.28Ω.The laser with new design is fabricated, 0.89W continuous output power at room temperature can be achieved at a current of 3A with voltage of 1.40V. The slope efficiency of the emitter is 0.32W/A, and almost no slope efficiency is observed in the process of increasing current until 2.6A.
Mid-infrared spectral region (2-4 μm) is acquiring significant attention due to the presence of various enabling applications in the field of remote gas detection, environmental pollution detection applications. Tm:YAP is an important crystal materials for diode-pumped laser emission of 2μm wavelength. We report a room-temperature diode pumped Tm:YAP thin disk laser. The maximum output power was 3.5 W at wavelength of 1940 nm.
High-power InGaSb/AlGaAsSb quantum well separate confinement structure lasers are fabricated. Threshold currents of the sample lasers range from 150mA to 270mA, turn-on voltages range from 0.51V to 0.59V. Stable high power and high efficiency operation is achieved, output powers at 3A range from 978mW to 1050mW, the power conversion efficiencies at 3A range from 21.3% to 22.9%, slop efficiencies range from 0.35W/A to 0.38W/A. The capability of fabricating reliable high-power 2μm GaSb-based laser is confirmed. The current of one sample was ramped up to 6A, the emitter exhibits a high performance with peak output power of 1320mW at 5.4A,maximum power conversion efficiency of 27.5% and slop efficiency of 0.34W/A.
The growth conditions and lasing characteristics of the optically barrier-pumped GaSb - based semiconductor disk laser (SDL) emitting near 2 μm in an external cavity configuration are reported. It is made of a GaSb/AlAsSb Bragg reflector, a Ga0.8In0.2Sb/GaSb multi quantum-well active region and an Al0.8Ga0.2As0.03Sb0.97 window layer. Using an intracavity SiC heat spreader, a cw output power in excess of 1.12 W has been achieved at a heat sink temperature of 0 °C.
We report the optimum growth parameters of InAs/AlSb superlattices (SLs) for interband cascade lasers (ICL) grown by the solid-source molecular beam epitaxy(MBE). The InAs/AlSb superlattices samples were grown on GaSb substrate at different temperatures and characterized by high resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM) and photoluminescence (PL). By changing the group-Ⅴ flux ratio during the SLs growth, the InAs/AlSb superlattices matched to GaSb substrate were obtained. Subsequently, the SLs were grown at different growth temperature. By photoluminescence we found the highest PL intensity was obtained when the SLs samples were grown at 458°C and the PL wavelength is at 1730 nm. From 10 × 10 μm2 AFM image, we found the root mean square (RMS) of the sample grown at 458°C was 1.96 Å which indicates the low surface roughness and god surface morphology.
We report the wavelength tuning of type-II “W” quantum well of interband cascade laser. By changing the thickness of the InAs electron well, the wavelength of the active region is adjusted. We found that the whole 3-4 μm spectra can be realized and the intensity was basically the same by measuring the photoluminescence (PL) of the active region. It showed that the type-II “W” quantum well of interband cascade laser can achieve 3-4 μm range without attenuation. In addition, we calculated the wavelength of quantum well of different InAs thickness by the 8-band k·p method. And we found that the wavelength of the active region varies with the thickness of the InAs electron well, which is consistent with the theory. In addition, the measured wavelength was different from the theoretical wavelength, which may be due to the As incorporation. The incorporation of As into the InGaSb layer will lead to blue shift in the wavelength.
Special processing of rapid thermal annealing on the cavity coating films for 1950 nm wavelength antimonide quantum well Laser diodes are studied. The maximum output power of the laser is greatly improved by RTA process on cavity facet films from around 610mW to above 700mW. The power conversion efficiency is further improved by the simple process by 23.2% than that of the laser coated. And the laser devices become more reliable and have extended service life after the process.
The semiconductor epitaxial design and lasing characteristics of an optically barrier-pumped GaSb -based semiconductor disk laser (SDL) emitting at 2.0 μm optimized for resonant optical barrier pumping around 1470 nm are presented. Compared to conventional barrier-pumped devices with pump wavelength of 980nm, the novel barrier-pumped device with the smaller quantum deficit reaches a significantly higher power efficiency, and thus a higher output power at a given pump power, due to the lesser internal heat generation. Using an intracavity SiC heat spreader, a cw output power in excess of 300 mW has been achieved at a heat sink temperature of +15 °C, and still more than 500 mW at +10 °C.
We report on successful fabricating of GaSb-based type-I quantum well distributed Bragg reflector (DBR) lasers emitting at 2080nm. Second-order Bragg gratings of chromium were patterned by electron beam lithography. For 1.5- mm-long laser diode, single mode continuous-wave operation with side mode suppression ratio (SMSR) as high as 30dB is obtained. The line-width of the lasing wave is kept as narrow as 70MHz. The devices show a stable single mode operation with current tuning rate of 0.01nm/mA.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.