We propose a production of well-collimated and quasi-mono-energetic ion beams through the interaction of high- intensity laser pulse with thin overdense double layer targets. The target consists of heavy and light material layer with the modulations at the interface between them. Using extensive 2D3V PIC simulations we show that a relativistic Richtmyer-Meshkov like instability results in the generation of collimated quasi-mono-energetic beams of light ions. We compare the effects of modulations at the surface of single layer targets and at the interface between two different particle species of double layer targets. It is shown that initially small perturbations are amplified during the laser-target interaction leading to the formation of low-density regions at the positions determined by the initial perturbation geometry and high-density plasma bunches between them. The bunches, with higher density than the density in the initial foil are then accelerated by the laser radiation pressure, leading to the generation of quasi-mono-energetic, collimated ion beams.
We develop a new simulation code for the optimization of efficiency of the laser pumped plasma (LPP) extreme ultra violet (EUV) light source, which is applicable to the pre-plasma formation from a tin droplet target irradiated by a pre-pulse laser. We investigate algorithms of reorganization of the mesh for the Lagrangian hydrodynamics simulation. We also investigate the model of the liquid to gas phase transition to calculate the dynamics of particle formation through the laser ablation.
We show an atomic model of Sn for the EUV sources. We show an improvement of the model in terms of the
selection of energy levels and correction of the wavelength of the emission lines including resonance and satellite
lines of combined 4d-4f and 4p-4d transition arrays. Calculated spectrum agrees well with experiments, showing
that the present model is useful both for theoretical investigation of the optimum conditions the EUV sources,
and for the analysis of experimental spectrum. A modeling method to estimate the initial spatial profile of the
discharge path for the analysis of laser-assisted discharge pumped plasma sources is also proposed.
We investigate characteristic feature of the atomic radiation from tin plasmas, which allow one to obtain high power EUV emission at λ=13.5nm efficiently. We develop a collisional radiative model of tin ions to calculate steady-state and time dependent ion abundance, level population, and coefficients of radiative transfer of the plasma. The model, which is based atomic data calculated using the Hullac code is refined both theoretically and experimentally. Calculation of the spectral emissivity and opacity are carried out over a wide range of plasma density and temperature, and pumping conditions to obtain high conversion efficiency are discussed.
The motion of both Lennard-Jones solids and metals induced by ultrashort laser irradiation near the ablation threshold is
investigated by molecular dynamics simulation. The universality of the ablation threshold fluence with respect to the
cohesion energy of solids irradiated by femtosecond laser pulses is demonstrated for Lennard-Jones solid and metals
simulated by many-body EAM potentials.
Theoretical consideration of the ablation of laser heated metal target based on two-temperature hydrodynamic calculation
is performed for aluminum and gold targets. Concurrent with the hydrodynamic calculation the molecular dynamics
simulation of the ablation was carried out in the case of aluminum. The initial state of matter for the molecular dynamics
is taken as a final state of hydrodynamic calculation. Molecular dynamics simulation is extended to cover late stages of
the evolution of two-phase foam placed between the crater and spalled cupola. Theoretical results are in a good
agreement with the experimental data obtained by the microinterferometer diagnostics of the femtosecond laser ablation
both for aluminum and gold.
In the present paper, we overview fabrication methods to produce density-controlled tin and xenon targets for generating
extreme ultraviolet (EUV) light. The target can be classified as a mass-limited target. In the case of tin, EUV was
relatively monochromatic, and its conversion efficiency was higher than bulk tin. Using the nano-template method, the
cellular foam size was controlled by the template size. The density was 0.5 ~1.5 g/cm3. In the case of the 0.5 g/cm3
foam, its morphology was controlled by changing the ethanol content of the precursor tin solution. The morphology
difference was useful to control the angular distribution of EUV radiation. SnO2 nanofiber, which is oriented low-density
material, was fabricated continuously using a electrospinning method. The width and the shape of the fiber were
controlled by optimizing precursor solution. A transparent film with tin and SnO2 elliptic spheres were prepared using
liquid crystalline cellulose derivative. Low density xenon was prepared from liquid xenon using a swirl atomizer to
produce a density of 0.2 g/cm3.
EUV emission from spherical and planer targets were precisely characterized as an experimental database for use in
EUV source generation at high repetition rates. In the single-shot base experiments, conversion efficiency as high as
those for the plasma geometry has been demonstrated. The integrated experiment was made with 10 Hz plasma
generation.
We propose a new scheme for high conversion efficiency from laser energy to 13.5 nm extreme ultra violet emission
within 2 % band width, a double pulse laser irradiation scheme with a tin droplet target. We consider two-color lasers, a
Nd:YAG laser with 1.06 µm in wavelength as a prepulse and a carbon dioxide laser with 10.6 µm in wavelength for a
main pulse. We show the possibility of obtaining a CE of 5 - 7 % using a benchmarked radiation hydro code. We have
experimentally tested the new scheme and observed increase of CE greater than 4 %. We show many additional
advantages of the new scheme, such as reduction of neutral debris, energy reduction of debris ions, and decrease of out
of band emission. We also discuss debris problems, such as ion sputtering using newly developed MD simulations, ion
mitigation by a newly designed magnetic coil using 3-PIC simulations and tin cleaning experiments.
In the present work phenomena are considered related to the interaction of ultra-short laser pulses, τL~0.1 ps, with metallic targets. The absorption of laser pulse results in formation of thin layer of hot electrons strongly superheated (Te>>Ti) relative to the ion temperature, Ti. Initial thickness of the layer dheat is small, dheat~δ, where δ~10 nm is the skin layer thickness. Subsequent developments include the following stages: (1) Propagation of electron thermal wave which expands the hot layer dheat; (2) Cooling of electrons due to energy transfer to cold ions; (3) Onset of hydrodynamic motion that constitutes the rarefaction wave with positive pressure; (4) Further expansion of target material leading to the appearance of negative pressure; and (5) Long separation process which begins with nucleation of voids and goes on to the total separation of spallation plate. The thickness of the plate is ~10 nm (we call it nanospallation). Theoretical model involves two-temperature hydrodynamic equations with semiempirical EOS for a metal, electron heat conduction and electron-ion energy exchange. The decay of metastable strongly stretched matter is described by molecular dynamics (MD) simulation with extremely large number of atoms. The experimental setup includes femtosecond chromium-forsterite laser operating in the pump-probe regime. The experiments are performed with gold target. Measured ablation threshold for gold is 1.35 J/cm2 of incident pump light at inclination 45°, p-polarization. Calorimeter measurements give for the absorbed fluence Fabs=0.3Finc, therefore the threshold value of Fabs is 0.4 J/cm2.
Laser-produced Sn plasma is an efficient extreme ultraviolet (EUV) light source, however the highest risk in the Sn-based EUV light source is contamination of the first EUV collection mirror caused by debris emitted from the Sn plasma. Minimum mass target is a key term associated with relaxation of the mirror contamination problem. For design of the optimum minimum mass Sn target, opacity effects on the EUV emission from the laser-produced Sn plasma should be considered. Optically thinner plasma produced by shorter laser pulse emits 13.5 nm light more efficiently; 2.0% of conversion efficiency was experimentally attained with drive laser of 2.2 ns in pulse duration, 1.0 × 1011 W/cm2 in intensity, and 1.064 μm in wavelength. Under the optimum laser conditions, the minimum mass required for sufficient EUV emission, which is also affected by the opacity, is equal to the product of the ablation thickness and the required laser spot size. Emission properties of ionized and neutral debris from laser-produced minimum mass Sn plasmas have been measured with particle diagnostics and spectroscopic method. The higher energy ions have higher charge states, and those are emitted from outer region of expanding plasmas. Feasibility of the minimum mass target has been demonstrated to reduce neutral particle generation for the first time. In the proof-of-principle experiments, EUV emission from a punch-out target is found to be comparable to that from a static target, and expansion energy of ion debris was drastically reduced with the use of the punch-out target.
The atomic processes in the Xe and Sn plasmas are investigated. The wavelength of atomic transitions is shown to have a critical effect in reproducing experiments. The wavelengths of resonance lines in our model are improved through detailed comparison with charge specific spectroscopic measurement. Distribution of satellite lines in the presence of the effect of the configuration interaction (CI) is investigated. The spectral profile of Xe and Sn emission, which determines fraction of usable EUV power, is discussed with respect to its dependence on the plasma temperature, density as well as the optical depth.
For EUV lithography the generation of clean and efficient light source and the high-power laser technology are key issues. Theoretical understanding with modeling and simulation of laser-produced EUV source based on detailed experimental database gives us the prediction of optimal plasma conditions and their suitable laser conditions for different target materials (tin, xenon and lithium). With keeping etendue limit the optimal plasma size is determined by an appropriate optical depth which can be controlled by the combination of laser wavelength and pulse width. The most promising candidate is tin (Sn) plasma heated by Nd:YAG laser with a pulse width of a few ns. Therefore the generation technology of clean Sn plasma is a current important subject to be resolved for practical use. For this purpose we have examined the feasibility of laser-driven rocket-like injection of extremely mass-limited Sn or SnO2 (punched-out target) with a speed exceeding 100m/s. Such a mass-limited low-density target is most preferable for substantial reduction of ion energy compared with usual bulk target. For high average power EUV generation we are developing a laser system which is CW laser diode pumped Nd:YAG ceramic laser (master oscillator and power amplifier system) operating at 5-10 kHz repetition rate. The design of practical laser for EUV source is being carried out based on the recent performance of >1 kW output power.
We have developed an integrated Laser Ablation Fluid Radiation simulation Code (LAFRAC) to estimate the behaviors of highly energetic ions and neutral particles from LPP EUV light sources, and estimated recombination and charge transfer processes between the particles from laser-produced Xe EUV light sources. We clarify that charge transfer effects greatly affect on the number density of neutral particles, especially high energy (more than roughly 500 eV) neutral particles.
Our institute has been investigating laser-produced tin plasma and EUV emission, and found the highest conversion efficiency of 3% at 13.5 nm in 2% bandwidth. In the present paper, we introduce fabrication methods of density-controlled tin targets to generate relatively monochromatic EUV with keeping similar conversion efficiency.
The first method is the nano-template method, where liquid tin solution was immersed into a polymer film with monodispersed size nanoparticle. The density can be controlled by tin concentration of the solution. The target can be classified into mass-limited target. We have shown a tendency of monochromatic EUV emission around 13.5 nm with decreasing of tin density. The intensity was higher than tin foil with bulk density. The tendency has a merit to mitigate heat effect of the first EUV mirror. The fabrication method has another merit to control not only density but also the poresize of tin oxide to be 100 nm ~ 10 mm. Recent experiments exhibited an EUV character depending on the poresize.
The second is liquid crystalline template method to obtain porous tin oxide. The precursor with tin oxide and cellulose provides mechanically stable and transparent film. The film has wavy sub-microstructure derived from microscopic liquid crystal domain structure. The method is simple and short duration for the hydrolysis reaction to solidify tin compound. This material has a merit of feasibility of fabrication, and was applied for rotation target for 10 Hz and 5 kHz laser repetition.
We develop an atomic model for the Xe and Sn plasmas based on the calculated atomic data for the theoretical investigatiion of the laser plasma EUV source. The wavelength and intensity of the emission lines of Xe8-16+ and Sn4-12+ are investigated, and the dominant charge state and emission channels for the radiation at 13.5 nm are identified. The emissivity and opacity at the collisional radiative equilibrium (CRE) are calculated, and their spectral properties are investigated with respect to the accuracy of the wavelength of major emission lines and the effect of satellite lines.
It is very effective for mass-limited tin-foil targets to adapt for the EUV source. Tin-foil targets in account of formation, size, and thickness have been developed for debris mitigation. The amount of ions from targets is 40 % decreased tin-foil targets of 1μm or 5μm thickness than tin-bulk targets. The ion velocity is one order of magnitude less than bulk targets. The EUV emission spectra of tin-foil are more narrowing than bulk targets. The targets supply for high repetition rate of 10 kHz is applied for a novel method. It is called "Punch-out" method. The flight of graphite foil that it is a test targets was succeed to observe by using a gated ICCD camera. The target velocity is achieved to be about 120 m/s. This value can be applied for targets supply with high repetition rate of 10 kHz.
Properties of laser-produced tin (Sn) plasmas were experimentally investigated for application to the Extreme Ultra-Violet (EUV) lithography. Optical thickness of the Sn plasmas affects strongly to EUV energy, efficiency, and spectrum. Opacity structure of uniform Sn plasma was measured with a temporally resolved EUV spectrograph coupled with EUV backlighting technique. Dependence of the EUV conversion efficiency and spectra on Sn target thickness were studied, and the experimental results indicate that control of optical thickness of the Sn plasma is essential to obtain high EUV conversion efficiency and narrow spectrum. The optical thickness is able to be controlled by changing initial density of targets: EUV emission from low-density targets has narrow spectrum peaked at 13.5 nm. The narrowing is attributed to reduction of satellite emission and opacity broadening in the plasma. Furthermore, ion debris emitted from the Sn plasma were measured using a charge collector and a Thomson parabola ion analyzer. Measured ablation thickness of the Sn target is between 30 and 50 nm for the laser intensity of 1.0 x 1011 W/cm2 (1.064 μm of wavelength and 10 ns of pulse duration), and the required minimum thickness for sufficient EUV emission is found to be about 30 nm under the same condition. Thus almost all debris emitted from the 30 nm-thick mass-limited Sn targets are ions, which can be screened out by an electro-magnetic shield. It is found that not only the EUV generation but also ion debris are affected by the Sn target thickness.
Extreme ultraviolet (EUV) emission from laser produced tin plasma was investigated for 1064, 532 and 266 nm laser wavelengths. The EUV conversion with tin target tends to be high for shorter laser wavelength and is optimized at 4-5x1010 W/cm2 for 1064 and 532 nm. The EUV emission exhibits laser wavelength dependence in terms of angular distribution and structures of emission spectra. It is found that spectra for 532 nm and 266 nm showed spectral dips at around 13.5 nm and these dips are well replicated in computer simulations. Both the angular distribution together with the spectral dips may suggest existence of opaque plasmas surrounding the EUV emission region.
Hydrodynamic instabilities are key issues of the physics of inertial confinement fusion (ICF) targets. Among the instabilities, Rayleigh-Taylor (RT) instability is the most important because it gives the largest growth factor in the ICF targets. Perturbations on the laser irradiated surface grow exponentially, but the growth rate is reduced by ablation flow. The growth rate γ is written as Takabe-Betti formula: γ = [kg/(1+kL)]1/2–βkm/pa, where k is wave number of the perturbation, g is acceleration, L is density scale-length, β is a coefficient, m is mass ablation rate per unit surface, and ρa is density at the ablation front. We experimentally measured all the parameters in the formula for polystyrene (CH) targets. Experiments were done on the HIPER laser facility at Institute of Laser Engineering, Osaka University. We found that the β value in the formula is ~ 1.7, which is in good agreements with the theoretical prediction, whereas the β for certain perturbation wavelengths are larger than the prediction. This disagreement between the experiment and the theory is mainly due to the deformation of the cutoff surface, which is created by non-uniform ablation flow from the ablation surface. We also found that high-Z doped plastic targets have multiablation structure, which can reduce the RT growth rate. When a low-Z target with high-Z dopant is irradiated by laser, radiation due to the high-Z dopant creates secondary ablation front deep inside the target. Since, the secondary ablation front is ablated by x-rays, the mass ablation rate is larger than the laser-irradiated ablation surface, that is, further reduction of the RT growth is expected. We measured the RT growth rate of Br-doped polystyrene targets. The experimental results indicate that of the CHBr targets show significantly small growth rate, which is very good news for the design of the ICF targets.
Integrated laser ablation simulation code includes phase transition from liquid to neutral gas to partially ionized plasma, detail laser absorption processes, equation of state, hydrodynamics, and radiation transport, is developed to describe ablation phenomena with phase transition and properties of emission plasmas. For an application of this simulation code, we perform simulations on optimization of laser produced plasmas for extreme ultra violet (EUV) light sources. Because of very low laser intensities (from 1010 W/cm2 to 1011 W/cm2) compared with that in laser fusion cases, it is necessary to include phase transition effects into ablation radiation hydrodynamics code.
Extreme ultraviolet (EUV) emission from laser produced plasma attracts much attention as a next generation lithography
source. The characterization of EUV emission has been carried out using GEKKO XII laser system. The twelve beams
irradiated tin or tin-oxide coated spherical targets uniformly and dependence of EUV spectra on laser intensity were
obtained with a transmission grating spectrometer and two grazing incidence spectrometers. The EUV Conversion
Efficiency (CE, the ratio of EUV energy at the wavelength of 13.5 nm with 2 % bandwidth to incident laser energy) was
measured using an absolutely calibrated EUV calorimeter. Optimum laser intensities for the highest conversion were
found to be 0.5- 1x1011 W/cm2 with CE of 3 %. The spectroscopic data indicate that shorter wavelength emission
increases at higher laser intensities due to excessive heating beyond optimum temperatures (20- 40 eV). The CE was
almost independent on the initial coating thickness down to 25 nm.
Extreme Ultra Violet (EUV) light source produced by laser irradiation emits not only the desired EUV light of
13 ~ 14 nm (about 90 eV) but also shorter x-rays. For example, emissions around 4 ~ 8 nm (about 150 ~ 300 eV)
and 1 ~ 2.5 nm (about 0.5 ~ 1.2 keV) are experimentally observed from Sn and/or SnO2 plasmas. These
emissions are correspond to the N-shell and M-shell transitions, respectively. From the view point of energy
balance and efficiency, these transitions should be suppressed. However, they may, to some extent, contribute
to provide the 5p and 4f levels with electrons which eventually emit the EUV light and enhance the intensity.
To know well about radiative properties and kinematic of the whole plasma, atomic population kinetics and
spectral synthesis codes have been developed. These codes can estimate the atomic population with nl-scheme
and spectral shapes of the EUV light. Radiation hydrodynamic simulation have been proceeding in this analysis.
Finally, the laser intensity dependence of the conversion efficiency calculated by these codes agrees with that of
the corresponding experimental results.
A possible design window for extreme ultraviolet (EUV) radiation source has been introduced, which is needed for
its realistic use for next generation lithography. For this goal, we have prepared a set of numerical simulation codes to
estimate the conversion efficiency from laser energy to radiation energy with a wavelength of 13.5 nm with 2 %
bandwidth, which includes atomic structure, opacity and emissibity and hydro dynamics codes. The simulation explains
well the observed conversion efficiency dependence of incident power using GEKKO XII laser system as well as spectral
shapes. It is found that the conversion efficiency into 13.5 nm at 2% bandwidth has its maximum of a few percent at the
laser intensity 1-2 x 1011 W/cm2.
Extremely ultraviolet (EUV) light at around 13.5 nm of wavelength is the most probable candidate of the light source for lithography for semiconductors of next generation. We have been studying about the EUV light source from laser-produced plasma. Detailed understanding of the EUV plasma is required for developments of modeling with simulation codes. Several parameters should be experimentally measured to develop the important issues in the simulation codes. We focused on density profile, properties of EUV emission, and opacity of the laser-produced plasmas. We present re-cent experimental results on these basic properties of the laser-produced EUV plasmas.
A new research project on extreme ultraviolet (EUV) source development has just been started at the Institute of Laser Engineering, Osaka University. The main task of this project is to find a scientific basis for generating efficient, high-quality, high power EUV plasma source for semiconductor industry. A set of experimental data is to be provided to develop a detailed atomic model included in computer code through experiments using GEKKO-XII high power laser and smaller but high-repetitive lasers. Optimum conditions for efficient EUV generation will be investigated by changing properties of lasers and targets. As the first step of the experiments, spherical solid tin and tin-oxide targets were illuminated uniformly with twelve beams from the GEKKO XII. It has been confirmed that maximum conversion efficiency into 13.5 nm EUV light is achieved at illumination intensity less than 2 x 1011 W/cm2. No significant difference is found between laser wavelengths of one μm and a half μm. Density structure of the laser-irradiated surface of a planar tin target has beem measured experimentally at 1012 W/cm2 to show formation of double ablation structure with density plateau by thermal radiation transport. An opacity experiment has just been initiated.
We started a project to develop a very compact accelerator for cancer therapy. To reduce the size of the system, we adopted a laser plasma ion source using a compact ultra-high intensity laser. We have performed ion generation experiments in which the laser parameters were as follows: The wave length and the pulse duration were 800 nm and 50 fs, respectively. Peak power was 4 - 5TW. The laser pulse with normal incidence angle to the target was focused onto the target with 15 μm diameter giving power density of 3 - 4x1018W/cm2. The thin foil metals (Ti, Al) and plastics (polypropylene, polyethylene) with the thicknesses of 4 - 100 μm were used for targets. We found that the angular distribution of ions with an energy of ~0.1 MeV had a significant peak in the backward and forward in respect to the laser incidence direction.
The linear convective instability of imploding gaseous masses is investigated with a self-similar solution, which takes radiation heat conduction into account. The solution shows that the implosion process continuously transits from initial adiabatic regime to consequent non-adiabatic regime, where the mechanical compression work and the radiation loss balance such that the Péclet number of the system is kept constant. The transition accompanies the decrease in the polytropic index, r d(logp)/d(log p) where p and p are respectively the pressure and density, with the adiabatic index i( r) as its initial vaiue. As a result of the radiative cooling, the fluid becomes unstable to convective modes, when the criterion for instability, d(p/pT)/dr <0, is fulfilled in the core. The spatial and temporal dependence of the perturbations are presented.
Investigations on laser cleaning for decontaminated surface have been performed by simulations and experiments. Basic equations of simulations are the equation of thermal conduction, the absorption of laser energy, boundary conditions of melting and evaporation. Simulations have bee performed for the case of 2-layers, basic material is SUS304 and surface pollutant is Fe3O4. Simulation results were in good agreements with experiments at the wide range of laser fluence.
C60 vapor was irradiated with an intense femtosecond laser pulse. Multiply charged carbon ions, up to C4+, were detected in the time-of-flight spectra. We have measured both energy and angular distributions with respect to the laser polarization direction for ions with different charge number. The kinetic energy of ions are distributed above 1 keV. The angular distribution measurement shows that the highly charged ions of C3+ and C4+ are mostly distributed in the direction parallel to the laser polarization, and the C+ ions are slightly distributed in the direction perpendicular to it. These observations clearly indicate that an anisotropic explosion takes place. The average energy of ions with the different charge number is found to be proportional to the square of the charge number, while the maximum energy is proportional to the charge number. Classical molecular dynamics simulations have been successfully carried out reproducing not only the energy spectra but also the angular distributions of ions. The simulations suggest that the most crucial process for the anisotropic Coulomb explosion of C60 is not the electron impact ionization, but the cascade hopping of electrons.
3D particle-in-cell simulations of the interaction of an ultra-intense linearly-polarized laser light with an over- dense plasma are presented. Intense laser radiation is shown to be unstable against modulation both in the direction of the laser propagation direction and in the direction perpendicular to the polarization direction. Growth rate of the instability has a maximum of the order of 0.1(omega) 0 when laser frequency (omega) 0 is of the order of the plasma frequency modified due to the relativistic increase of electron mass in the laser field. As a result the laser breaks up into clumps with the size of the relativistic collision-less skin depth. Analytical description of the instability is also presented. Dependence of the growth rate on the laser intensity and wavenumber of perturbations is discussed.
Reviewed are the progress in direct drive implosion researches with Gekko XII laser system. Precise observation of the growth rate of Rayleigh-Taylor instability and the suppression of imprints using indirect-direct hybrid implosion have been investigated. Theoretical and experimental researchers on the fast ignition scheme are also studied. Relativistic laser plasma interaction experiments with Peta-Watt Module and Gekko XII are also described. Finally, the future direction of the research including the development of solid state laser for fusion reactor is discussed.
An aspherical lens for the control of the intensity distribution on the target has been designed and fabricated. The diffraction from the edge of the element lens was eliminated with an edge- shaped plate. The beam profile on the target was measured, and it was in good agreement with the calculated profile by the diffraction code with the aspherical lens shape.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.