Through its participation to European programs, SAGEM has worked on the design and manufacturing of normal
incidence collectors for EUV sources. By opposition to grazing incidence, normal incidence collectors are expected to
collect more light with a simpler and cheaper design. Designs are presented for the two current types of existing sources:
Discharge Produced Plasma (DPP) and Laser Produced Plasma (LPP). Collection efficiency is calculated in both cases. It
is shown that these collectors can achieve about 10 % efficiency for DPP sources and 40 % for LPP sources. SAGEM
works on the collectors manufacturability are also presented, including polishing, coating and cooling. The feasibility of
polishing has been demonstrated with a roughness better than 2 angstroms obtained on several materials (glass, silicon,
Silicon Carbide, metals...). SAGEM is currently working with the Institut d'Optique and the Laboratoire des Materiaux
Avancés on the design and the process of EUV coatings for large mirrors. Lastly, SAGEM has studied the design and
feasibility of an efficient thermal control, based on a liquid cooling through slim channels machined close to the optical
surface.
HECOR (HElium CORonagraph) is a coronagraph designed to observe the solar corona at 30.4 nm between 1.2 and 4
solar radii. The instrument is part of the Herschel sounding rocket payload to be flown from White Sands Missile Range
in December 2007. Much like for neutral hydrogen, the residual singly ionized helium present in the corona can be
detected because it resonantly scatters the intense underlying chromospheric radiation. Combined with the simultaneous
measurements of the neutral hydrogen corona made by SCORE, the other coronagraph of the Herschel payload, the
HECOR observations will provide novel diagnostics of the solar wind outflow. HECOR is an externally occulted
coronagraph of very simple design. It uses a triple-disc external occulting system, a single off axis multilayer coated
mirror and a CCD camera. We present measurements of the EUV mirror roughness and reflectivity, tests of the image
quality, and measurements of the stray light rejection performance. The mirror uses a novel multilayer design with three
components that give HECOR a high throughput.
The SWAP telescope (Sun Watcher using Active Pixel System detector and Image Processing) is being developed to be
part of the PROBA2 payload, an ESA technological mission to be launched in early 2008. SWAP is directly derived
from the concept of the EIT telescope that we developed in the '90s for the SOHO mission. Several major innovations
have been introduced in the design of the instrument in order to be compliant with the requirements of the PROBA2
mini-satellite: compactness with a new of-axis optical design, radiation resistance with a new CMOS-APS detector, a
very low power electronics, an athermal opto-mechanical system, optimized onboard compression schemes combined
with prioritization of collected data, autonomy with automatic triggering of observation and off-pointing procedures in
case of Solar event occurrence, ... All these new features result from the low resource requirements (power, mass,
telemetry) of the mini-satellite, but also take advantage of the specificities of a modern technological platform, such as
quick pointing agility, new powerful on-board processor, Packetwire interface and autonomous operations.
These new enhancements will greatly improve the operations of SWAP as a space weather sentinel from a low Earth
orbit while the downlink capabilities are limited. This paper summarizes the conceptual design, the development and the
qualification of the instrument, the autonomous operations and the expected performances for science exploitation.
Among X-ray and extreme ultraviolet light sources able to produce shorter and shorter, coherent and intense pulses, High
order harmonics generated in rare gases are currently the unique way to generate attosecond pulses. However, the
manipulation and transport of attosecond pulses require the development of dedicated optics for reaching specific
characteristics in terms of amplitude but also in terms of spectral phase control. We present here a multilayer design for
chirp compensation of attosecond pulses. We also present an application of these multilayers mirrors for attosecond train
pulse holography experiment with high harmonics. This experience took benefit of both temporal and spatial phase
properties of high harmonics. A resolution of 750 nm has been achieved by using a 350 as train pulse for the reference
wave constituted of four consecutive harmonics (λ=28 nm to λ=41 nm). This new method will allow making ultra fast
movies with attosecond resolution of transient phenomena with quasi-3D resolution.
The development of new high power EUV sources and EUV space imaging requires optics having specific
properties which depend on applications and operating conditions. These both applications are very different in the
working multilayers environment. For the high power sources, multilayers are submitted to short pulses with high
energy peak whereas, for the space imaging, multilayers are submitted to continuous flux with low level. Moreover
photon energy and environment for both applications may be different. The environment may affect structure and top
layer contamination when optics are stored, handled, mounted on the final device and finally operating. Main
environmental parameters investigated are temperature and humidity variation.
One objective is the optimisation of multilayer coatings to offer the highest resistance under photonic, ionic
fluxes and temperature cycle. This means that interfacial diffusion between thin layers and degradation of the capping
layers have to be avoided or reduced. The present study relies with designing, depositing and testing different structures
of multilayer coatings in order to minimise the influence of the environment.
Multilayer coatings based on molybdenum, silicon and silicon carbide materials have been deposited by magnetron
sputtering on silicon and zerodur substrates. Samples were submitted to radiations emitted by an EUV source at
wavelength closed to 13.5 nm. Furthermore they were also submitted to thermal cycles and annealing under warm
humidity in the aim to simulate extremes storage or handling conditions as space mission's conditions.
The damages and the performance of the multilayers were evaluated by using grazing incidence reflectometry
at 0.154 nm and EUV reflectometry at the operating wavelength.
After a presentation of the multilayer design, deposition and metrology tools, we will describe the different
environmental effects on the coatings to take in care during EUV source exposure, handling and storage conditions.
First results on multilayers performances to EUV source exposure and space specification tests are presented. Main
damages studies were on annealing, thermal cycling and warm humidity.
Theoretically, periodic three component multilayers as B4C/Mo/Si allow an improvement of the reflectivity in the 25 nm-40 nm range as compared to two component multilayers as B4C/Si. Optimized B4C/Mo/Si and B4C/Si multilayers have been deposited by magnetron sputtering and ion beam sputtering. The multilayers have been characterized by x-ray grazing reflectometry (λ = 0.154 nm) and synchrotron radiation measurements at near normal incidence. The maximum experimental reflectivity for B4C/Si is 25% at 32 nm and 23% at 38 nm. For B4C/Mo/Si multilayers, we obtained an experimental reflectivity of 34% at 32 nm and 29% at 39.5 nm. Moreover the width of the Bragg peak is larger for B4C/Mo/Si than for B4C/Si. We have used these multilayers in a non periodical structure in order to produce broadband mirrors. It consists of the superposition of two periodic B4C/Mo/Si multilayers with different period thickness. Theoretical optimization of such structure by simulation is presented. Preliminary experimental results demonstrate the interest of such structure : two broadband mirrors have been deposited and measured over a wide wavelength range (12 nm to 45 nm). The first mirror presents a broadband spectrum centered at 32 nm with peak reflectivity of 22% and bandwidth larger than 9 nm. The second mirror has been optimized to produce theoretically an average reflectivity of 19% from 25 nm to 35 nm.
We present an experimental study of aging and thermal stability of Sc/Si multilayers deposited by magnetron sputtering. These multilayers have been characterized by using hard X-ray grazing incidence reflectometry at 0.154 nm and synchrotron radiation reflectometry at near normal incidence. The reflectivity was found to be stable after one year. A maximum reflectivity of 46% has been measured at 46 nm. However a 20% relative decrease of the reflectivity have been observed after one hour thermal annealing at 200°C. In order to improve thermal stability, we studied two different barriers layers (B4C and ScN ). We compare the decrease of peak reflectivity and its wavelength shift after one hour annealing at 200°C under argon atmosphere. The best result was observed with the design using 0.3 nm B4C barrier layers. A relative decrease of 2% of the reflectivity peak has been observed with this design as compared to a 20% decrease without barrier layers.
In the race towards attosecond (as) pulses for which high order harmonics generated in rare gases are the best candidates, both the Harmonic spectral range and spectral phase have to be controlled. We present in this proceeding four mirrors numerically optimized and designed to compensate for the intrinsic Harmonic chirp recently discovered and which is responsible for a temporal broadening of the pulses. They are capable of compressing the duration down to 100 as. We present the fabrication of those aperiodic multilayers and show the measurement of reflectivity, which prooves that those multilayers are in agreement with the specifications and so let us think that they will be able to compress attosecond high harmonics trains.
Orbiting around the Sun on an inclined orbit with a 0.2 UA perihelion, the Solar Orbiter probe will provide high resolution views of the Sun from various angles unattainable from Earth. Together with a set of high resolution imagers, the Full Sun Imager is part of the EUV Imaging suite of the Solar Orbiter mission. The mission's ambitious characteristics draw severe constraints on the design of these instruments. We present a photometrically efficient, compact, and lightweight design for the Full Sun Imager. With a 5 degrees field of view, this telescope will be able to see the global solar coronal structure from high viewing angles. Thermal solutions reducing the maximum power trapped in the High Resolution Imagers are also proposed.
Imaging of the solar corona by selecting Fe IX (λ=17.1nm,), Fe XII (λ=19.5nm), Fe XV (λ=28.4nm) and He II (λ=30.4nm) emission lines with a Ritchey-Chretien telescope requires to coat the optics with multilayers having a high accuracy in their layer thicknesses, a high reflectivity and an optimal bandpass. Multilayers were simulated in order to determine the most adequate formula for each wavelength channel. Mo/Si coatings were deposited by using the ion beam sputtering technique in a high vacuum chamber equipped with a micro balance and an in-situ reflectometer. The multilayers were studied by grazing angle reflectometry at 0.1541nm, and their reflectances around the operating wavelengths were measured on the SA62 IAS/LURE beam line of the SuperACO
synchrotron facility located at Orsay. In addition, aging versus time and behavior of the multilayers under a rapid thermal annealing were investigated.
Performances of the ion-beam deposited multilayers have been improved compared to the Mo/Si coatings obtained in the past by the e-beam evaporation technique for the SOHO mission Extreme UV Imaging Telescope (EIT). The EUVI telescopes for the STEREO mission are being proceduced by depositing these new generation of multilayers onto
primary and secondary mirrors. The reflectivity measurements on a telescope are presented.
The MAGRITTE telescopes are part of the SHARPP instrument suite, part of the Solar Dynamics Observatory (SDO), a NASA spacecraft to be launched in a geostationnary orbit in 2007. The MAGRITTE instrument package will provide high resolution images of the solar corona at high temporal frequency simultaneously in 5 EUV and in Ly-α narrow bandpasses. The 1.4 R0 MAGRITTE common field of view complements the other SHARPP instruments, as well as its spectral coverage with 6 narrow bandpasses located within the 19.5 to 120 nm interval. The key challenges of the MAGRITTE instrument are a high angular resolution (0.66 arcsec/pixel) with a high responsivity (exposure times smaller than 8 sec), combined with restricted spacecraft resources. The design of MAGRITTE is based on a high performance off-axis Ritchey-Chretien optical system combined with a large detector (4 K x 4 K, 12 µm pixel). The tight pointing stability performance of 1.2 arcsec over the image exposure time requires an active image motion control, using pointing information of a Guide Telescope, to compensate low frequency boresight variations produced by spacecraft jitter. The thermomechanical design and the mirror polishing are highly critical issues in the instrument design. This paper presents the MAGRITTE design concept with the expected performances based on a realistic error budget. The mirror polishing concept and performances are discussed.
The Solar Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory will characterize the dynamical evolution of the solar plasma from the chromosphere to the corona, and will follow the connection of plasma dynamics with magnetic activity throughout the solar atmosphere. The AIA consists of 7 high-resolution imaging telescopes in the following spectral bandpasses: 1215Å. Ly-a, 304 Å He II, 629 Å OV, 465 Å Ne VII, 195 Å Fe XII (includes Fe XXIV), 284 Å Fe XV, and 335 Å Fe XVI. The telescopes are grouped by instrumental approach: the MAGRITTE Filtergraphs (R. MAGRITTE, famous 20th Century Belgian Surrealistic Artist), five multilayer EUV channels with bandpasses ranging from 195 to 1216 Å, and the SPECTRE Spectroheliograph with one soft-EUV channel at OV 629 Å. They will be simultaneously operated with a 10-second imaging cadence. These two instruments, the electronic boxes and two redundant Guide Telescopes (GT) constitute the AIA suite. They will be mounted and coaligned on a dedicated common optical bench. The GTs will provide pointing jitter information to the whole SHARPP assembly. This paper presents the selected technologies, the different challenges, the trade-offs to be made in phase A, and the model philosophy. From a scientific viewpoint, the unique combination high temporal and spatial resolutions with the simultaneous multi-channel capability will allow MAGRITTE / SPECTRE to explore new domains in the dynamics of the solar atmosphere, in particular the fast small-scale phenomena. We show how the spectral channels of the different instruments were derived to fulfill the AIA scientific objectives, and we outline how this imager array will address key science issues, like the transition region and coronal waves or flare precursors, in coordination with other SDO experiments. We finally describe the real-time solar monitoring products that will be made available for space-weather forecasting applications.
The Extreme Ultraviolet Imager (EUVI) is part of the SECCHI instrument suite currently being developed for the NASA STEREO mission. Identical EUVI telescopes on the two STEREO spacecraft will study the structure and evolution of the solar corona in three dimensions, and specifically focus on the initiation and early evolution of coronal mass ejections (CMEs). The EUVI telescope is being developed at the Lockheed Martin Solar and Astrophysics Lab. The SECCHI investigation is led by the Naval Research Lab. The EUVI’s 2048 x 2048 pixel detectors have a field of view out to 1.7 solar radii, and observe in four spectral channels that span the 0.1 to 20 MK temperature range. In addition to its view from two vantage points, the EUVI will provide a substantial improvement in image resolution and image cadence over its predecessor SOHO-EIT, while complying with the more restricted mass, power, and volume allocations on the STEREO mission.
Metrology of XUV beams and more specifically X-ray laser (XRL) beam is of crucial importance for development of applications. We have then developed several new optical systems enabling to measure the x-ray laser optical properties. By use of a Michelson interferometer working as a Fourier-Transform spectrometer, the line shapes of different x-ray lasers have been measured with an unprecedented accuracy (δλ/λ~10-6). Achievement of the first XUV wavefront sensor has enable to measure the beam quality of laser-pumped as well as discharge pumped x-ray lasers. Capillary discharge XRL has demonstrated a very good wavefront allowing to achieve intensity as high 3*1014 Wcm-2 by focusing with a f = 5 cm mirror. The measured sensor accuracy is as good as λ/120 at 13 nm. Commercial developments are under way.
We present the longitudinal coherence measurement of the transient inversion collisional x-ray laser for the first time. The Ni-like Pd x-ray laser at 14.68 nm is generated by the LLNL COMET laser facility and is operating in the gain-saturated regime. Interference fringes are produced using a Michelson interferometer setup in which a thin multilayer-coated membrane is used as a beam splitter. The longitudinal coherence length for the picosecond duration 4d1S0 -> 4p1P1 lasing transition is determined to be ~400 µm (1/e HW) by adjusting the length of one interferometer arm and measuring the resultant variation in fringe visibility. This is four times improved coherence than previous measurements on quasi-steady state schemes largely as a result of the narrower line profile in the lower temperature plasma. The inferred gain-narrowed linewidth of ~0.29 pm is also substantially narrower than previous measurements on quasi-steady state x-ray laser schemes. This study shows that the coherence of the x-ray laser beam can be improved by changing the laser pumping conditions. The x-ray laser is operating at 4 - 5 times the transform-limited pulse.
Objective grating spectrometers have been used previously to image the sun in the EUV proving simultaneous images at several wavelengths. The grazing incidence variant of this type of instrument seems well adapted for application to the future Solar Orbiter mission planned by the ESA where thermal problems are expected to be severe. This type of optical arrangements also provide more flexibility for the optimal selection of performances.
The LYOT (LYman Orbiting Telescope) solar mission is proposed to be implemented on a micro-satellite of CNES (France) under phase A study. It includes two main instruments, which image the solar disk and the low corona up to 2.5 Ro in the H I Lyman-α line at 121.6 nm. The spatial resolution is about 1” for the disk and 2.5” for corona. It also carries an EIT-type telescope in the He II (30.4 nm) line. The coronagraph needs a super polished mirror at the entrance pupil to minimize the light scattering. Gratings and optical filters are used to select the Lyman-α wavelength. VUV cameras with 2048×2048 pixels record solar images up to every 10 seconds.
The satellite operates at a high telemetry rate (more then 100 kb/s, after onboard data compression). The envisaged orbits are either geostationary or heliosynchronous. Possible launch dates could be end of 2006 - beginning of 2007.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.