The final optics in the National Ignition Facility (NIF) are protected from target debris by sacrificial (disposable) debris shields (DDS) comprised of 3-mm thick Borofloat. While relatively inexpensive, Borofloat has been found to have bulk inclusions which, under UV illumination, damage, grow, and occasional erupt though the surface of the DDS. We have shown previously that debris generated from Input Surface Bulk Eruptions (ISBE) are a significant source of damage on NIF. Inclusion-free fused silica debris shield (FSDS) have been installed in between the DDS and the final optics on some NIF beam lines to test their efficacy in mitigating damage initiation. We will show results of the damage performance of the FSDS and its role in protecting the final optics. These results will help in our economic analysis of the potential benefits of using FSDS to protect NIF final optics.
Loose abrasive grinding was performed on a wide range of optical workpiece materials [single crystals of Al2O3 (sapphire), SiC, Y3Al5O12 (YAG), CaF2, and LiB3O5 (LBO); a SiO2-Al2O3-P2O5-Li2O glass-ceramic (Zerodur); and glasses of SiO2 : TiO2 (ULE), SiO2 (fused silica), and P2O5-Al2O3-K2O-BaO (phosphate)]. Using the magneto rheological finishing (MRF) taper wedge technique (where a wedge was polished on each of the ground workpieces and the resulting samples were appropriately chemically etched), the subsurface mechanical damage (SSD) characteristics were measured. The SSD depth for most of the workpiece materials was found to scale as E11/2 / H1, where E1 is the elastic modulus and H1 is the hardness of the workpiece. This material scaling is the same as that for the growth of lateral cracks, suggesting that lateral cracks are a dominant source for SSD rather than radial/median cracks, as previously proposed. Utilizing the SSD depth data from both this study and others, semiempirical relationships have been formulated, which allows for estimating the SSD depth as a function of workpiece material and important grinding parameters (such as abrasive size and applied pressure).
Operating the National Ignition Facility (NIF) near its power and energy performance limits has revealed a new damage initiation mechanism in the final UV optics. The typical damage event involves the last three optics in the NIF beamline: the final focusing lens, the grating debris shield, and the target debris shield. It occurs on high power shots from intensifications from small phase defects (pits) on the exit surface of the focusing lens that travel through the grating debris shield before reflecting off the AR-coated target debris shield about 75 cm downstream, then propagate back upstream and damage the input surface of the grating debris shield optic which is 15 cm downstream of the focusing lens. Ray tracing has firmly established the direct relationship between the phase defects on the final focusing lens and the damage on grating debris via the reflection from the target debris shield. In some cases, bulk filamentary damage is also observed in the 1-cm thick fused silica grating debris shield. It is not fully understood at this point how there can be enough energy from the reflected beam to cause damage where the forward-going beam did not. It does not appear that interaction between the forward-going beam and the backward-going reflected beam is necessary for damage to occur. It does appear necessary that the target debris shield be previously exposed to laser shots and/or target debris. Furthermore, there is no evidence of damage imparted to the target debris shield or the final focusing lens. We will describe all the conditions under which we have (and have not) observed these relatively rare events, and the steps we have taken to mitigate their occurrence, including identification and elimination of the source phase defects.
There are 830 transport mirrors with a combined surface area of approximately 255 m2 of precision multilayer coatings deposited on 50 metric tons of BK7 glass in the high fluence transport section of the National Ignition Facility (NIF). With peak fluences over 20 J/cm2 at 1053 nm, less than five percent of these mirrors are exchanged annually due to laser damage since full system operations began in 2009. Multiple technologies have been implemented to achieve these low exchange rates. The coatings are complex dichroics designed to reflect the fundamental wavelength (1053 nm) and an alignment beam (374 nm) while suppressing target backscatter wavelengths (351 nm and 400-700 nm) from backward propagation up the beamlines. Each optic is off-line laser conditioned to nominally 50% over the average fluence and nominally 90% of the peak fluence allowing the final laser conditioning to occur on-line during NIF operations. Although the transport section of NIF is sealed in a clean argon environment, air knives were installed on upward facing transport mirrors to blow off particulates that could accumulate and initiate laser damage. Beam dumps were installed in between the final optics assembly and the final transport mirrors to capture ghost reflections from the anti-reflection coated surfaces on the transmissive optics used for polarization rotation, frequency conversion, and focusing the 192 laser beams on target. Spot blockers, normally used for the final optics, are sometimes used to project a shadow over transport mirror laser damage in an effort to arrest laser damage growth and extend transport mirror lifetime. Post analysis of laser-damaged mirrors indicates that the dominant causes of laser damage are from surface particulates and the 351-nm wavelength target backscatter.
The primary sources of damage on the National Ignition Facility (NIF) Grating Debris Shield (GDS) are attributed to
two independent types of laser-induced particulates. The first comes from the eruptions of bulk damage in a
disposable debris shield downstream of the GDS. The second particle source comes from stray light focusing on
absorbing glass armor at higher than expected fluences. We show that the composition of the particles is
secondary to the energetics of their delivery, such that particles from either source are essentially benign if they
arrive at the GDS with low temperatures and velocities.
C. Haefner, A. Bayramian, S. Betts, R. Bopp, S. Buck, J. Cupal, M. Drouin, A. Erlandson, J. Horáček, J. Horner, J. Jarboe, K. Kasl, D. Kim, E. Koh, L. Koubíková, W. Maranville, C. Marshall, D. Mason, J. Menapace, P. Miller, P. Mazurek, A. Naylon, J. Novák, D. Peceli, P. Rosso, K. Schaffers, E. Sistrunk, D. Smith, T. Spinka, J. Stanley, R. Steele, C. Stolz, T. Suratwala, S. Telford, J. Thoma, D. VanBlarcom, J. Weiss, P. Wegner
Large laser systems that deliver optical pulses with peak powers exceeding one Petawatt (PW) have been constructed at dozens of research facilities worldwide and have fostered research in High-Energy-Density (HED) Science, High-Field and nonlinear physics [1]. Furthermore, the high intensities exceeding 1018W/cm2 allow for efficiently driving secondary sources that inherit some of the properties of the laser pulse, e.g. pulse duration, spatial and/or divergence characteristics. In the intervening decades since that first PW laser, single-shot proof-of-principle experiments have been successful in demonstrating new high-intensity laser-matter interactions and subsequent secondary particle and photon sources. These secondary sources include generation and acceleration of charged-particle (electron, proton, ion) and neutron beams, and x-ray and gamma-ray sources, generation of radioisotopes for positron emission tomography (PET), targeted cancer therapy, medical imaging, and the transmutation of radioactive waste [2, 3]. Each of these promising applications requires lasers with peak power of hundreds of terawatt (TW) to petawatt (PW) and with average power of tens to hundreds of kW to achieve the required secondary source flux.
Controlling laser damage is essential for reliable and cost-effective operation of high energy laser systems. We will
review important optical damage precursors in silica up to UV fluences as high as 45J/cm2 (3ns) along with studies of
the damage mechanisms involved and processes to mitigate damage precursors. We have found that silica surface
damage is initiated by nano-scale precursor absorption followed by thermal coupling to the silica lattice and formation of
a laser-supported absorption front. Residual polishing compound and defect layers on fracture surfaces are primarily
responsible for optic damage below about 10J/cm2; they can be mitigated by an optimized oxide etch processes. At
fluences above about 10J/cm2, precipitates of trace impurities are responsible for damage; they can be mitigated by
eliminating the chances of impurity precipitation following wet chemical processing. Using these approaches, silica
damage densities can be reduced by many orders of magnitude allowing large increases in the maximum operating
fluences these optics see.
Chemical vapor deposition (CVD) has been used for the production of fused silica optics in high power laser
applications. However, relatively little is known about the ultraviolet (UV) laser damage threshold of CVD films
and how they relate to intrinsic defects produced during deposition. We present a study relating structural and
electronic defects in CVD films to the 355 nm pulsed laser damage threshold as a function of post-deposition
annealing temperature (THT). Plasma-enhanced CVD, based on SiH4/N2O under oxygen-rich conditions, was used
to deposit 1.5, 3.1 and 6.4 μm thick films on etched SiO2 substrates. Rapid annealing was performed using a
scanned CO2 laser beam up to THT~2100 K. The films were then characterized using X-ray photoemission
spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and photoluminescence (PL). A gradual
transition in the damage threshold of annealed films was observed at THT up to 1600 K, correlating with a decrease
in NB silanol and broadband PL emission. An additional sharp transition in damage threshold also occurs at ~1850
K indicating substrate annealing. Based on our results, a mechanism for damage-related defect annealing is
proposed, and the potential of using high-THT CVD SiO2 to mitigate optical damage is also discussed.
Previous studies have identified two significant precursors of laser damage on fused silica surfaces at fluences <35 J/cm2: photoactive impurities from polishing and surface fractures. We evaluate isothermal heating as a means of remediating the defect structure associated with surface fractures. Vickers indentations are applied to silica surfaces at loads between 0.5 and 10 N, creating fracture networks. The indentations are characterized before and following thermal annealing under various time and temperature conditions using confocal time-resolved photo-luminescence (CTP) imaging, and R/1 damage testing with 3-ns, 355-nm laser pulses. Improvements in the damage thresholds with reductions in CTP intensity are observed at temperatures well below the glass transition temperature (Tg). The damage threshold on 0.5-N indentations improves from <8 to >35 J/cm2 after annealing at approximately 750°C. Larger fracture networks require longer or higher temperature treatment to achieve similar results. At an annealing temperature >1100°C, optical microscopy indicates morphological changes in some of the fractures surrounding the indentations, although remnants of the original fractures are still observed. We demonstrate the potential of using isothermal annealing to improve the laser damage resistance of silica optics, and provide a means of further understanding the physics of optical damage and mitigation.
A system of customized spatial light modulators has been installed onto the front end of the laser system at the National
Ignition Facility (NIF). The devices are capable of shaping the beam profile at a low-fluence relay plane upstream of the
amplifier chain. Their primary function is to introduce "blocker" obscurations at programmed locations within the beam
profile. These obscurations are positioned to shadow small, isolated flaws on downstream optical components that might
otherwise limit the system operating energy. The modulators were designed to enable a drop-in retrofit of each of the 48
existing Pre Amplifier Modules (PAMs) without compromising their original performance specifications. This was
accomplished by use of transmissive Optically Addressable Light Valves (OALV) based on a Bismuth Silicon Oxide
photoconductive layer in series with a twisted nematic liquid crystal (LC) layer. These Programmable Spatial Shaper
packages in combination with a flaw inspection system and optic registration strategy have provided a robust approach
for extending the operational lifetime of high fluence laser optics on NIF.
Customized spatial light modulators have been designed and fabricated for use as precision beam shaping devices in
fusion class laser systems. By inserting this device in a low-fluence relay plane upstream of the amplifier chain,
"blocker" obscurations can be programmed into the beam profile to shadow small isolated flaws on downstream optical
components that might otherwise limit the system operating energy. In this two stage system, 1920 × 1080 bitmap
images are first imprinted on incoherent, 470 nm address beams via pixelated liquid crystal on silicon (LCoS)
modulators. To realize defined masking functions with smooth apodized shapes and no pixelization artifacts, address
beam images are projected onto custom fabricated
optically-addressable light valves. Each valve consists of a large,
single pixel liquid cell in series with a photoconductive Bismuth silicon Oxide (BSO) crystal. The BSO crystal enables
bright and dark regions of the address image to locally control the voltage supplied to the liquid crystal layer which in
turn modulates the amplitude of the coherent beams at 1053 nm. Valves as large as 24 mm × 36 mm have been
fabricated with low wavefront distortion (<0.5 waves) and antireflection coatings for high transmission (>90%) and
etalon suppression to avoid spectral and temporal ripple. This device in combination with a flaw inspection system and
optic registration strategy represents a new approach for extending the operational lifetime of high fluence laser optics.
There is a longstanding, and largely unexplained, correlation between the laser damage susceptibility
of optical components and both the surface quality of the optics, and the presence of near surface
fractures in an optic. In the present work, a combination of acid leaching, acid etching, and confocal
time resolved photoluminescence (CTP) microscopy has been used to study laser damage initiation
at indentation sites. The combination of localized polishing and variations in indentation loads
allows one to isolate and characterize the laser damage susceptibility of densified, plastically flowed
and fractured fused silica. The present results suggest that: 1) laser damage initiation and growth are
strongly correlated with fracture surfaces, while densified and plastically flowed material is
relatively benign, and 2) fracture events result in the formation of an electronically defect rich
surface layer which promotes energy transfer from the optical beam to the glass matrix.
Using high-sensitivity confocal time-resolved photoluminescence (CTP) techniques, we report an ultra-fast
photoluminescence (40ps-5ns) from impurity-free surface flaws on fused silica, including polished, indented or
fractured surfaces of fused silica, and from laser-heated evaporation pits. This fast photoluminescence (PL) is not
associated with slower point defect PL in silica which has characteristic decay times longer than 5ns. Fast PL is
excited by the single photon absorption of sub-band gap light, and is especially bright in fractures. Regions which
exhibit fast PL are strongly absorptive well below the band gap, as evidenced by a propensity to damage with 3.5eV
ns-scale laser pulses, making CTP a powerful non-destructive diagnostic for laser damage in silica. The use of CTP
to provide insights into the nature of damage precursors and to help develop and evaluate new damage mitigation
strategies will be presented.
Fluoride-based wet chemical etching of fused silica optical components is useful to open up surface fractures for
diagnostic purposes, to create surface topology, and as a possible mitigation technique to remove damaged material. To
optimize the usefulness of etching, it is important to understand how the morphology of etched features changes as a
function of the amount of material removed. In this study, we present two geometric etch models that describe the
surface topology evolution as a function of the amount etched. The first model, referred to as the finite-difference etch
model, represents the surface as an array of points in space where at each time-step the points move normal to the local
surface. The second model, referred to as the surface area-volume model, more globally describes the surface evolution
relating the volume of material removed to the exposed surface area. These etch models predict growth and coalescence
of surface fractures such as those observed on scratches and ground surfaces. For typical surface fractures, simulations
show that the transverse growth of the cracks at long etch times scales with the square root of etch time or the net
material removed in agreement with experiment. The finite-difference etch model has also been applied to more complex
structures such as the etching of a CO2 laser-mitigated laser damage site. The results indicate that etching has little
effect on the initial morphology of this site implying little change in downstream scatter and modulation characteristics
upon exposure to subsequent high fluence laser light. In the second part of the study, the geometric etch model is
expanded to include fluid dynamics and mass transport. This later model serves as a foundation for understanding
related processes such as the possibility of redeposition of etch reaction products during the etching, rinsing or drying
processes.
We have developed an experimental technique that combines magnetorheological finishing (MRF) and microscopy to examine fractures and/or artifacts in optical materials. The technique can be readily used to provide access to, and interrogation of, a selected segment of a fracture or object that extends beneath the surface. Depth slicing, or cross-sectioning at selected intervals, further allows the observation and measurement of the three-dimensional nature of the sites and the generation of volumetric representations that can be used to quantify shape and depth, and to understand how they were created, how they interact with surrounding material, and how they may be eliminated or mitigated.
Managing subsurface damage during the shaping process and removing subsurface damage during the polishing process is essential in the production of low damage density optical components, such as those required for use on high peak power lasers. Removal of subsurface damage, during the polishing process, requires polishing to a depth which is greater than the depth of the residual cracks present following the shaping process. To successfully manage, and ultimately remove subsurface damage, understanding the distribution and character of fractures in the subsurface region introduced during fabrication process is important. We have characterized the depth and morphology of subsurface fractures present following fixed abrasive and loose abrasive grinding processes. At shallow depths lateral cracks and an overlapping series of trailing indentation fractures were found to be present. At greater depths, subsurface damage consists of a series of trailing indentation fractures. The area density of trailing fractures changes as a function of depth, however the length and shape of individual cracks remain nearly constant for a given grinding process. We have developed and applied a model to interpret the depth and crack length distributions of subsurface surface damage in terms of key variables including abrasive size and load.
Understanding the behavior of fractures and subsurface damage in the processes used during optic fabrication plays a key role in determining the final quality of the optical surface finish. During the early stages of surface preparation, brittle grinding processes induce fractures at or near an optical surface whose range can extend from depths of a few μm to hundreds of μm depending upon the process and tooling being employed. Controlling the occurrence, structure, and propagation of these sites during subsequent grinding and polishing operations is highly desirable if one wishes to obtain high-quality surfaces that are free of such artifacts. Over the past year, our team has made significant strides in developing a diagnostic technique that combines magnetorheological finishing (MRF) and scanning optical microscopy to measure and characterize subsurface damage in optical materials. The technique takes advantage of the unique nature of MRF to polish a prescribed large-area wedge into the optical surface without propagating existing damage or introducing new damage. The polished wedge is then analyzed to quantify subsurface damage as a function of depth from the original surface. Large-area measurement using scanning optical microscopy provides for improved accuracy and reliability over methods such as the COM ball-dimple technique. Examples of the technique's use will be presented that illustrate the behavior of subsurface damage in fused silica that arises during a variety of intermediate optical fabrication process steps.
The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized high-energy (1.8 megajoule) / high-peak power (500 terawatt) laser system, which will utilize over 3000 meter-size Nd-doped metaphosphate glasses as its gain media. The current production status, the selection criteria of individual slabs for specific beam line locations, and some recent technical advances are reviewed. The glass blanks are manufactured by a novel continuous glass melting process, and the finished slabs are then prepared by epoxy bonding a Cu-doped phosphate glass edge cladding and by advanced finishing techniques. To date, nearly 3400 slab equivalents have been melted, 2600 have been rough-cut to blanks, 1200 have been finished, and 144 have been installed in NIF. A set of selection rules, which are designed to optimize laser performance (e.g., maintain gain balance between beam lines and minimize beam walkoff) and to maximize glass lifetime with respect to Pt damage site growth, have been established for assigning individual slabs to specific beam line locations. Recent technical advances for amplifier slab production, which include: 1) minimizing surface pitting (hazing) after final finishing; 2) minimizing humidity-induced surface degradation (weathering) upon storage and use; and 3) preventing mounting-induced surface fractures upon installation, have contributed in improving the laser glass quality.
Transport mirrors within the National Ignition Facility, a 192-beam 4-MJ fusion laser at 1053 nm, will be epxosed to backscattered light from plasmas created from fusion targets and backlighters. This backscattered light covers the UV and visible spectrum from 351 - 600 nm. The transport mirror BK7 substrates will be intentionally solarized to absorb >95% of the backscattered light to prevent damage to the metallic mechanical support hardware. Solarization has minimal impact on the 351- 1053-nm laser-induced damage threshold or the reflected wavefront of the multilayer hafnia silica coating. Radiation sources of various energies were examined for BK7 darkening efficiency within the UV and visible region with 1.1 MeV gamma rays from a Cobalt 60 source ultimately being selected. Finally, bleaching rates were measured at elevated temperatures to generate a model for predicting the lifetime at ambient conditions (20°C), before solarized BK7 substrates exceed 5% transmission in the UV and visible region. Over a 30-mm thickness, BK7 glass will bleach in 10 years to 5% transmission at 600 nm, the most transmissive wavelengths over the 351 - 600 nm regions.
Laser-induced damage initiation on fused silica optics can limit the lifetime of the components when used in high power UV laser environments. For example in inertial confinement fusion research applications, the optics can be exposed to temporal laser pulses of about 3 nsec with average fluences of 8 J/cm2 and peak fluences between 12 and 15 J/cm2. During the past year, we have focused on optimizing the damage performance at a wavelength of 355-nm (3(omega) ), 3-nsec pulse length, for optics in this category by examining a variety of finishing technologies with a challenge to improve the laser damage initiation density by at least two orders of magnitude. In this paper, we describe recent advances in improving the 3(omega) damage initiation performance of laboratory-scale zirconium oxide and cerium oxide conventionally finished fused silica optics via application of processes incorporating magnetorheological finishing (MRF), wet chemical etching, and UV laser conditioning. Details of the advanced finishing procedures are described and comparisons are made between the procedures based upon large area 3(omega) damage performance, polishing layer contamination, and optical subsurface damage.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.