To achieve the numerical aperture required for the next generation of immersion lithography, water may be replaced with a high index liquid as the immersion fluid. Because of their low surface tension to viscosity ratios, candidate high index fluids have an increased tendency to lose liquid from the under-lens region during scanning. Because any residual liquid left on the wafer is a potential defect mechanism, the conversion to high index fluids may drastically reduce scanning speeds and wafer throughput. The mechanism for liquid loss strongly depends on the behavior of the three-phase contact line; thus, this work focuses on the experimental study of the static and dynamic contact line behavior of five high index fluids. Contact angle and critical liquid loss velocity data is compared to the current model, which has been updated to better fit this new range of fluids. Liquid loss behaviors and their implications to the immersion lithography industry are discussed.
To achieve the numerical aperture required for the next generation of immersion lithography, water
may be replaced with a high index liquid as the immersion fluid. Due to their low surface tension to
viscosity ratios, candidate high index fluids have an increased tendency to lose liquid from the underlens
region during scanning. Since any residual liquid left on the wafer is a potential defect mechanism,
the conversion to high index fluids may drastically reduce scanning speeds and chip throughput. The
mechanism for liquid loss strongly depends on the behavior of the three-phase contact line, so this
work focuses on the experimental study of the static and dynamic contact behavior of five high index
fluids. Contact angle and critical liquid loss velocity data is compared to the critical velocity model we
previously developed, and the liquid loss behavior is discussed.
Liquid loss occurs at the receding contact line that forms when a substrate is withdrawn from a liquid. This behavior, often called film pulling, is fundamental to coating and cleaning processes, as well as other systems. There has been substantial prior work relative to understanding the static and dynamic behavior of the receding contact line and film pulling, but this work has focused primarily on operating conditions where the interfacial and viscous forces dominate. In the current work, experimental investigations are presented that identify a second regime, where inertial forces are dominant. These results are used to develop a semiempirical model for predicting the velocity at which an arbitrary liquid is deposited onto an arbitrary smooth substrate from the receding meniscus. The model is verified for a range of fluid properties and is accurate to within 20% mean average error.
This paper is a revision of the authors' previous work entitled "Experimental characterization of the receding meniscus
under conditions associated with immersion lithography," presented in Optical Microlithography XIX, edited by Donis
G. Flagello, Proceedings of SPIE Vol. 6154 (SPIE, Bellingham, WA, 2006) 61540R.
Several engineering challenges accompany the insertion of the immersion fluid in a production tool, one of the most
important being the confinement of a relatively small amount of liquid to the under-lens region. The semiconductor
industry demands high throughput, leading to relatively large wafer scan velocities and accelerations. These result in
large viscous and inertial forces on the three-phase contact line between the liquid, air, and substrate. If the fluid
dynamic forces exceed the resisting surface tension force then residual liquid is deposited onto the substrate that has
passed beneath the lens. Liquid deposition is undesirable; as the droplets evaporate they will deposit impurities on the
substrate. In an immersion lithography tool, these impurities may be transmitted to the printed pattern as defects.
A substantial effort was undertaken relative to the experimental investigation of the static and dynamic contact angle
under conditions that are consistent with immersion lithography. A semi-empirical model is described here in order to
predict the velocity at which liquid loss occurs. This model is based on fluid physics and correlated to measurements of
the dynamic and static contact angles. The model describes two regimes, an inertial and a capillary regime, that are
characterized by two distinct liquid loss processes. The semi-empirical model provides the semiconductor industry with
a useful predictive tool for reducing defects associated with film pulling.
Immersion lithography seeks to extend the resolution of optical lithography by filling the gap between the final optical element and the wafer with a liquid characterized by a high index of refraction. Several engineering obstacles are associated with the insertion of the immersion fluid. One issue that has recently been identified is the deposition of the immersion liquid onto the wafer from the receding contact line during the scanning process; any residual liquid left on the wafer represents a potential source of defects. The process of residual liquid deposition is strongly dependent on the behavior of the receding three-phase contact line. This paper focuses on an experimental investigation of this behavior under conditions that are relevant to immersion lithography. Specifically, the static and dynamic contact angle and the critical velocity for liquid deposition are presented together with a semi-empirical correlation developed from these measurements. The correlation allows the film-pulling velocity to be predicted for a given resist-coated surface using only a measurement of the static receding contact angle and knowledge of the fluid properties. This correlation represents a useful tool that can serve to approximately guide the development of resists for immersion systems as well as to evaluate alternative immersion fluid candidates to minimize film pulling and defects while maximizing throughput.
193 nm immersion lithography is rapidly moving towards industrial application, and an increasing
number of tools are being installed worldwide, all of which will require immersion-capable
photoresists to be available. At the same time, existing 193 nm processes are being ramped up using
dry lithography. In this situation, it would be highly advantageous to have a single 193 nm resist that
can be used under both dry and wet conditions, at least in the initial stages of 45nm node process
development. It has been shown by a number of studies that the dominant (meth)acrylate platform of
193 nm dry lithography is in principle capable of being ported to immersion lithography, however, it
has been an open question whether a single resist formulation can be optimized for dry and wet
exposures simultaneously.
For such a dry/wet crossover resist to be successful, it will need to make very few
compromises in terms of performance. In particular, the resist should have similar LER/LWR,
acceptable process window and controlled defects under wet and dry exposure conditions.
Additionally, leaching should be at or below specifications, preferably without but at very least with
the use of a top protective coat. In this paper, we will present the performance of resists under wet
and dry conditions and report on the feasibility of such crossover resists. Available results so far
indicate that it is possible to design such resists at least for L/S applications. Detailed data on
lithographic performance under wet and dry conditions will be presented for a prototype dry/wet
crossover L/S resist.
The semiconductor industry has used optical lithography to create impressively small features. However, the resolution of optical lithography is approaching limits based on light wavelength and numerical aperture. Immersion lithography is a means to extend the resolution by inserting a liquid with a high index of refraction between the lens and wafer. This enables the use of higher numerical aperture optics. Several engineering obstacles must be overcome before immersion lithography can be used on an industry-wide scale. One such challenge is the deposition of the immersion liquid onto the wafer during the scanning process; any residual liquid left on the wafer is a potential defect mechanism. The residual liquid deposition is controlled by the details of the fluid management system, and is strongly dependent on the three-phase contact line. Therefore, this work concentrates on understanding the behavior of this contact line, specifically by measuring the dynamic contact angle and the critical velocity for liquid deposition. A contact angle measurement technique is developed and verified; the technique is subsequently applied to measure the dynamic advancing and receding contact angle for a series of resist-covered surfaces under conditions that are relevant to immersion lithography.
Immersion lithography allows the semiconductor industry to create next-generation devices without requiring a large shift in infrastructure, making it an appealing extension to optical lithography. Improved resolution is enabled by placing an immersion fluid with a high refractive index between the final lens of the optical system and the resist-coated wafer. Several engineering challenges accompany the insertion of the immersion fluid in a production tool, one of the most important being the confinement of a relatively small amount of liquid to the under-lens region. The semiconductor industry demands high throughput, leading to relatively large wafer scan velocities and accelerations. These result in large viscous and inertial forces on the three-phase contact line between the liquid, air, and substrate. If the fluid dynamic forces exceed the resisting surface tension force then residual liquid is deposited onto the substrate. Liquid deposition is undesirable; as the droplets evaporate, they will deposit impurities on the substrate. In an immersion lithography tool, these impurities may result in defects. An experimental investigation was undertaken to study the static and dynamic contact angle under conditions that are consistent with immersion lithography. A semi-empirical model is described here to predict the velocity at which liquid loss occurs. This model is based on fluid physics and correlated to measurements of the dynamic and static contact angles. The model describes two regimes, an inertial and a capillary regime, characterized by two distinct liquid loss processes. The semi-empirical model provides the semiconductor industry with a useful predictive tool for reducing defects associated with film pulling.
In immersion lithography, the air gap that currently exists between the last lens element of the exposure system and the wafer is filled with a liquid that more closely matches the refractive index of the lens. There is a possibility that air bubbles, which represent a refractive index discontinuity, may be present in the liquid within the active exposure region and cause errors in imaging. One potential source of bubble generation is related to the flow of liquid over previously patterned features, or topography, during scanning or filling. This microscale entrainment mechanism is investigated experimentally and analyzed using computational fluid dynamics (CFD) modeling. The contact angle is a critical parameter that governs the behavior of the contact line and therefore the entrainment of air due to topography; the same topography on a hydrophobic surface is more likely to trap air than on a hydrophilic one. The contact angle can be a strong function of the flow velocity; a hydrophilic surface can exhibit hydrophobic behavior when the velocity of the free surface becomes large. Therefore, the contact angle was experimentally measured under static and dynamic conditions for a number of different surfaces, including resist-coated wafers. Finally, the flow of liquid across 500-nm-deep, straight-sidewall spaces of varying width was examined using both experimental visualization and CFD modeling. No air entrainment was observed or predicted over the velocity and contact angle conditions that are relevant to immersion lithography. The sharp-edged features studied here represent an extreme topography relative to the smoother features that are expected on a planarized wafer; therefore, it is not likely that the microscale entrainment of bubbles due to flow over wafer-level topography will be a serious problem in immersion lithography systems.
Bubbles and droplets may be detrimental to the successful implementation of immersion lithography, depending in part on their lifetime in the system. In this work, a model is developed to estimate the dissolution times of nitrogen bubbles in pure water that may be free-floating or adhered to a solid surface. The model is then extended to small free and adhered droplets. Bubble dissolution and droplet evaporation times for typical immersion lithography conditions are presented.
In immersion lithography, the air gap that currently exists between the last lens element of the exposure system and the wafer is filled with a liquid that more closely matches the refractive index of the lens. There is a possibility that air bubbles, which represent a refractive index discontinuity, may be present in the liquid within the active exposure region and cause errors in imaging. One potential source of bubble generation is related to the flow of liquid over previously patterned features, or topography, during scanning or filling. This microscale entrainment mechanism is investigated experimentally and analyzed using computational fluid dynamics (CFD) modeling. The contact angle is a critical parameter that governs the behavior of the contact line and therefore the entrainment of air due to topography; the same topography on a hydrophobic surface is more likely to trap air than on a hydrophilic one. The contact angle can be a strong function of the flow velocity; a hydrophilic surface can exhibit hydrophobic behavior when the velocity of the free surface becomes large. Therefore, the contact angle was experimentally measured under static and dynamic conditions for a number of different surfaces, including resist-coated wafers. Finally, the flow of liquid across 500-nm deep, straight-sidewall spaces of varying width was examined using both experimental visualization and CFD modeling. No air entrainment was observed or predicted over the velocity and contact angle conditions that are relevant to immersion lithography. The sharp-edged features studies here represent an extreme topography relative to the smoother features that are expected on a planarized wafer; therefore, it is not likely that the microscale entrainment of bubbles due to flow over wafer-level topography will be a serious problem in immersion lithography systems.
We have measured the intrinsic scattering of water with an eye toward its potential impact on immersion lithography. Quantitative measurements of the elastic Rayleigh scatter agree well with theory and show a loss of 0.001 cm-1. Qualitative measurements of the inelastic Raman scattering show a strong peak at 206 nm, consistent with the O-H stretch present in water. Both are expected to contribute flare of < 10-6 of the incident intensity. We have also examined the possibility for bubbles in the immersion liquid, and in particular those which form near the resist surface. We have measured scattering from single bubbles and estimate that bubbles as small as 5 μm should be detectable in this fashion. In addition, we have measured the potential for bubbles due to laser induced resist outgassing by direct imaging. In 2500 resist images (~235 mm2 of surface), we have seen only one bubble candidate which, due to its persistence in the water, we do not believe represents a true outgassing-induced bubble. Finally, using a technique borrowed from biology, rapid cryofixation/freeze fracture, we have examined nanobubbles which form spontaneously on hydrophobic surfaces and found that degassing the water prevents their formation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.