On-board SVOM to be launched in 2024, the Microchannel X-Ray Telescope (MXT) is equipped with a 256 x 256 pixel pnCCD and two CAMEX ASIC operated at -65°C, and a full-custom front-end electronics box to control the focal plane and extract photon events. Proton irradiation tests were performed on a qualification model of the MXT focal plane and were followed by spectral calibration tests in the SOLEIL synchrotron. The paper will describe the setups of these two campaigns and the performance results, in particular the degradation of charge efficiency transfer and energy resolution by displacement damage dose.
This paper describes the strategy and planned implementation of the ground calibration of the X-IFU microcalorimeter spectrometer on-board Athena, the X-ray observatory from ESA to be launched after the mid-2030s. X-IFU is the second generation of space microcalorimeter instrument, and its calibration strategy benefits from the experience acquired on the present Japanese-US built Resolve instrument on-board XRISM. This calibration plan takes into account the reformulation of the Athena mission and its instruments that took place in 2022-23. The X-IFU calibration strategy is presented along with the set of X-ray sources needed for the ground calibration and the the definition of the sequences for using them.
SVOM (Space based Variable Object Monitor) is a Chinese-French mission dedicated to the study of the most luminous explosions in the Universe: Gamma-Ray Bursts. This observatory for time-domain astrophysics is due for launch on June 24th 2024. Among the four space borne instruments is the Micro-channel X-ray Telescope (MXT). The MXT is a focusing X-ray telescope, based on “lobster-eye” optics, whose main goal is to improve the localization of transient sources, as well as to measure their timing and spectral properties. The MXT camera is implementing a 256 × 256 pixels pnCCD detector, sensitive in the 0.2-10 keV energy range. The spectral performance of the MXT instrument was measured in 2021 during the calibration campaign at the MPE PANTER X-ray facility and the End-to-End testing during the vacuum and thermal tests of the full satellite in the SECM Shanghai integration facility. SVOM is in a low-Earth orbit crossing the South Atlantic Anomaly, and the MXT will thus be submitted to irradiation, in particular from protons, that will cause radiation damage. To anticipate the evolution of the MXT performances over its three years mission lifetime, a spare flight model of the MXT detector plane has been irradiated with 50 MeV protons at the Arronax cyclotron facility, and then installed and characterized at the X-ray Metrology beamline of the SOLEIL Synchrotron in June 2023.
This paper presents the results of calibration campaigns to infer the performances of the MXT instrument over the lifetime of the SVOM mission.
Advanced Telescope for High-Energy Astrophysics is a large-class astrophysics space mission selected by the European Space Agency to study the theme “Hot and Energetic Universe.” The mission essentially consists of a large effective area x-ray telescope and two detectors: the X-ray Integral Field Unit (X-IFU) and the Wide Field Imager (WFI). Both instruments require filters to shield from out-of-band radiation while providing high transparency to x-rays. The mission is presently in phase B; thus, to consolidate the preliminary design, investigated filter materials need to be properly characterized by experimental test campaigns. We report results from high-resolution x-ray transmission measurements performed using different synchrotron radiation beamlines to assess the filter calibration accuracy and mitigate the risk related to selecting a unique calibration facility. The main goals of these test campaigns are (i) to verify the compliance of the investigated filter design to the scientific requirements, (ii) to develop an accurate x-ray transmission model, and (iii) to start identifying suitable measurement facilities and achievable accuracy for the flight filters calibration program. In particular, the x-ray transmission model of the X-IFU and WFI filters has been refined within the edges of Al, C, N, and O by deriving the optical constants from two reference samples measured by synchrotron light. The achievable filter calibration accuracy has been estimated by evaluating the agreement between the best-fit according to the developed transmission model and the experimental data.
The X-ray Integral Field Unit (X-IFU) is the high resolution X-ray spectrometer of the ESA Athena X-ray observatory. Over a field of view of 5’ equivalent diameter, it will deliver X-ray spectra from 0.2 to 12 keV with a spectral resolution of 2.5 eV up to 7 keV on ∼ 5” pixels. The X-IFU is based on a large format array of super-conducting molybdenum-gold Transition Edge Sensors cooled at ∼ 90 mK, each coupled with an absorber made of gold and bismuth with a pitch of 249 μm. A cryogenic anti-coincidence detector located underneath the prime TES array enables the non X-ray background to be reduced. A bath temperature of ∼ 50 mK is obtained by a series of mechanical coolers combining 15K Pulse Tubes, 4K and 2K Joule-Thomson coolers which pre-cool a sub Kelvin cooler made of a 3He sorption cooler coupled with an Adiabatic Demagnetization Refrigerator. Frequency domain multiplexing enables to read out 40 pixels in one single channel. A photon interacting with an absorber leads to a current pulse, amplified by the readout electronics and whose shape is reconstructed on board to recover its energy with high accuracy. The defocusing capability offered by the Athena movable mirror assembly enables the X-IFU to observe the brightest X-ray sources of the sky (up to Crab-like intensities) by spreading the telescope point spread function over hundreds of pixels. Thus the X-IFU delivers low pile-up, high throughput (< 50%), and typically 10 eV spectral resolution at 1 Crab intensities, i.e. a factor of 10 or more better than Silicon based X-ray detectors. In this paper, the current X-IFU baseline is presented, together with an assessment of its anticipated performance in terms of spectral resolution, background, and count rate capability. The X-IFU baseline configuration will be subject to a preliminary requirement review that is scheduled at the end of 2018.
Euclid-VIS is the large format visible imager for the ESA Euclid space mission in their Cosmic Vision program, scheduled for launch in 2021. Together with the near infrared imaging within the NISP instrument, it forms the basis of the weak lensing measurements of Euclid. VIS will image in a single r+i+z band from 550-900 nm over a field of view of ~0.5 deg2 . By combining 4 exposures with a total of 2260 sec, VIS will reach to deeper than mAB=24.5 (10s) for sources with extent ~0.3 arcsec. The image sampling is 0.1 arcsec. VIS will provide deep imaging with a tightly controlled and stable point spread function (PSF) over a wide survey area of 15000 deg2 to measure the cosmic shear from nearly 1.5 billion galaxies to high levels of accuracy, from which the cosmological parameters will be measured. In addition, VIS will also provide a legacy dataset with an unprecedented combination of spatial resolution, depth and area covering most of the extra-Galactic sky. Here we will present the results of the study carried out by the Euclid Consortium during the period up to the beginning of the Flight Model programme
In the frame work of the ESA Euclid mission to be launched in 2020, the Euclid Consortium is developing an extremely large and stable focal plane for the VIS instrument. After an extensive phase of definition and study over 4 years made at CEA on the thermo-mechanical architecture of that Focal Plane, the first model (Structural and Thermal Model) has been assembled qualified and delivered to MSSL in June 2017.
The VIS Focal Plane Assembly integrates 36 CCDs (operated at 150K) connected to their front end electronics (operated at 280K). This Focal Plane will be the largest focal plane (~0.6 billion pixels) ever built for space application after the GAIA one. The CCDs are CCD273 type specially designed and provided by the Teledyne e2v company under ESA contract, front end electronics is studied and provided by MSSL.
The Structural and Thermal Model is fully representative of the Flight Model regarding the thermo-mechanical architecture. As the instrument development philosophy follows a Proto Flight approach this choice has been made very early in the development program in order to reduce the risk on the PFM program. So the AIT/AIV plan has been built in order to fully validate since the STM program the overall integration, verification and qualification sequences, taking into account the very stringent cleanliness requirement. The STM FPA integrates 36 CCDs representative of the flight model except for the detection function. Electrical configuration of the front end electronics provides electrical interface in order to power the CCDs and check integrity of all the electrical links to CCDs.
In this paper we first recall the architecture of the VIS-FPA and especially the solutions proposed to cope with the scientific needs of an extremely stable focal plane, both mechanically and thermally leading to a SiC structure. The modular architecture concept, considered as a key driver for such big and complex focal plane is detailed. Parallel to that, the integration workflow including verification steps is fully depicted including specific aspects linked to the use of SiC. Validation and qualification test program is described. A summary of geometrical measurements, thermal balance tests and vibrations tests including the main Ground Support Equipment description are reported.
Keyword list: Euclid, CCD, SiC, focal plane, architecture, integration
The discovery of X-ray emission from cosmic sources in the 1960s has opened a new powerful observing window on the Universe. In fact, the exploration of the X-ray sky during the 70s–90s has established X-ray astronomy as a fundamental field of astrophysics. Today, the emission from astrophysical sources is by large best known at energies below 10 keV. The main reason for this situation is purely technical since grazing incidence reflection has so far been limited to the soft X-ray band. Above 10 keV all the observations have been obtained with collimated detectors or coded mask instruments. To make a leap step forward in Xray astronomy above 10 keV it is necessary to extend the principle of focusing X ray optics to higher energies, up to 80 keV and beyond. To this end, ASI and CNES are presently studying the implementation of a X–ray mission called Simbol-X.
Taking advantage of emerging technology in mirror manufacturing and spacecraft formation flying, Simbol-X will push grazing incidence imaging up to ~ 80 keV and beyond, providing a strong improvement both in sensitivity and angular resolution compared to all instruments that have operated so far above 10 keV. This technological breakthrough will open a new highenergy window in astrophysics and cosmology. Here we will address the problematic of the development for such a distributed and deformable instrument. We will focus on the main performances of the telescope, like angular resolution, sensitivity and source localization. We will also describe the specificity of the calibration aspects of the payload distributed over two satellites and therefore in a not “frozen” configuration.
KEYWORDS: Electronics, Point spread functions, Charge-coupled devices, Power supplies, Calibration, Fermium, Frequency modulation, Sensors, Field programmable gate arrays, Clocks
Euclid is a medium class European Space Agency mission scheduled for launch in 2020. The goal of the survey is to examine the nature of Dark Matter and Dark Energy in the Universe. One of the cosmological probes used to analyze Euclid’s data, the weak lensing technique, measures the distortions of galaxy shapes and this requires very accurate knowledge of the system point spread function (PSF). Therefore, to ensure that the galaxy shape is not affected, the detector chain of the telescope’s VISible Instrument (VIS) needs to meet specific performance performance requirements. Each of the 12 VIS readout chains consisting of 3 CCDs, readout electronics (ROE) and a power supply unit (RPSU) will undergo a rigorous on-ground testing to ensure that these requirements are met. This paper reports on the current status of the warm and cold testing of the VIS Engineering Model readout chain. Additionally, an early insight to the commissioning of the Flight Model calibration facility and program is provided.
A. Goldwurm, P. Ferrando, D. Götz, P. Laurent, F. Lebrun, O. Limousin, S. Basa, W. Bertoli, Eric Delagnes, Y. Dolgorouky, O. Gevin, A. Gros, C. Gouiffes, F. Jeanneau, C. Lachaud, M. Llored, C. Olivetto, G. Prevot, D. Renaud, J. Rodriguez, C. Rossin, S. Schanne, S. Soldi, P. Varniere
The main objective of the Wide Field Monitor (WFM) on the LOFT mission is to provide unambiguous detection of the high-energy sources in a large field of view, in order to support science operations of the LOFT primary instrument, the LAD. The monitor will also provide by itself a large number of results on the timing and spectral behavior of hundreds of galactic compact objects, Active Galactic Nuclei and Gamma-Ray Bursts. The WFM is based on the coded aperture concept where a position sensitive detector records the shadow of a mask projected by the celestial sources. The proposed WFM detector plane, based on Double Sided micro-Strip Silicon Detectors (DSSD), will allow proper 2-dimensional recording of the projected shadows. Indeed the positioning of the photon interaction in the detector with equivalent fine resolution in both directions insures the best imaging capability compatible with the allocated budgets for this telescope on LOFT. We will describe here the overall configuration of this 2D-WFM and the design and characteristics of the DSSD detector plane including its imaging and spectral performances. We will also present a number of simulated results discussing the advantages that this configuration offers to LOFT. A DSSD-based WFM will in particular reduce significantly the source confusion experienced by the WFM in crowded regions of the sky like the Galactic Center and will in general increase the observatory science capability of the mission.
Today it is widely recognised that a measurement of the polarization status of cosmic sources high energy emission is a
key observational parameter to understand the active production mechanism and its geometry. Therefore new
instrumentation operating in the hard X/soft γ rays energy range should be optimized also for this type of measurement.
In this framework, we present the concept of a small high-performance spectrometer designed for polarimetry between
100 and 1000 keV suitable as a stratospheric balloon-borne payload dedicated to perform an accurate and reliable
measurement of the polarization status of the Crab pulsar, i.e. the polarization level and direction. The detector with 3D
spatial resolution is based on a CZT spectrometer in a highly segmented configuration designed to operate as a high
performance scattering polarimeter. We discuss different configurations based on recent development results and
possible improvements currently under study. Furthermore we describe a possible baseline design of the payload, which
can be also seen as a pathfinder for a high performance focal plane detector in new hard X and soft gamma ray focussing
telescopes and/or advanced Compton instruments. Finally we present preliminary data from Montecarlo undergoing
studies to determine the best trade-off between polarimetric performance and detector design complexity.
KEYWORDS: Space operations, Sensors, Mirrors, Spatial resolution, Physics, Space telescopes, Telescopes, Collimators, Particles, High energy astrophysics
Simbol-X is a hard X-ray mission, operating in the ~ 0.5-80 keV range, proposed as a collaboration between the French
and Italian space agencies with participation of German laboratories for a launch in 2013. Relying on two spacecraft in a
formation flying configuration, Simbol-X uses for the first time a 20-30 m focal length X-ray mirror to focus X-rays
with energy above 10 keV, resulting in over two orders of magnitude improvement in angular resolution and sensitivity
in the hard X-ray range with respect to non-focusing techniques. The Simbol-X revolutionary instrumental capabilities
will allow us to elucidate outstanding questions in high energy astrophysics such as those related to black-holes accretion
physics and census, and to particle acceleration mechanisms, which are the prime science objectives of the mission.
After having undergone a thorough assessment study performed by CNES in the context of a selection of a formation
flight scientific mission, Simbol-X has been selected for a phase A study to be jointly conducted by CNES and ASI. The
mission science objectives, the current status of the instrumentation and mission design are presented in this paper.
Simbol-X is a next generation X-ray telescope with spectro-imaging capabilities over the 0.5 to 80 keV energy
range. The combination of a formation flying mirror and detector spacecraft allows to extend the focal length
to 20 m, resulting in a so far unrivaled angular resolution and sensitivity in the hard X-ray range. The focal
plane detector system for Simbol-X is planned to consist of an array of so-called Macro Pixel Detectors (MPD)
on top of a 2 mm thick CdZnTe pixellated detector array. Photons of energy less than about 17 keV will be
primarily absorbed in the MPDs, whereas higher energy photons will be detected in the CdZnTe array below. A
computer model of such stacked detectors and its interaction with the radiation environment encountered by the
spacecraft in orbit is currently being developed by our group using the Monte Carlo toolkit GEANT4. We present
results of the simulation and an outlook for possible optimizations of future detector geometry and shielding.
The Simbol-X mission, currently undergoing a joint CNES-ASI phase A, is essentially a classical X-ray telescope having an exceptional large focal length obtained by formation flying technics. One satellite houses the Wolter I optics to focus, for the first time in space, X-rays above ~10 keV, onto the focal plane in the second satellite. This leads to improved angular resolution and sensitivity which are two orders of magnitude better than those obtained so far with non-focusing techniques. Tailored to the 12 arcmin field of view and ~15 arcsec angular resolution of the optics, the ~8x8 cm2 detection area of the spectro-imager has ~ 500x500 μm2 pixels, and covers the full energy range of Simbol-X, from ~0.5 to ~80 keV, with a good energy resolution at both low and high energy. Its design leads to a very low residual background in order to reach the required sensitivity. The focal plane ensemble is made of two superposed spectro-imaging detectors: a DEPFET-SDD active pixel sensor on top of an array of pixelated Cd(Zn)Te crystals, surrounded by an appropriate combination of active and passive shielding. Besides the overall concept and structure of the focal plane including the anti-coincidence and shielding, this paper also emphasizes the promising results obtained with the active pixel sensors and the Cd(Zn)Te crystals combined with their custom IDeF-X ASICs.
SIMBOL-X is a hard X-ray mission, operating in the ~ 0.5-70 keV range, which is proposed by a consortium of European laboratories in response to the 2004 call for ideas of CNES for a scientific mission to be flown on a formation flying demonstrator. Relying on two spacecrafts in a formation flying configuration, SIMBOL-X uses for the first time a ~ 30 m focal length X-ray mirror to focus X-rays with energy above 10 keV, resulting in a two orders of magnitude improvement in angular resolution and sensitivity in the hard X-ray range with respect to non focusing techniques. The SIMBOL-X revolutionary instrumental capabilities will allow to elucidate outstanding questions in high energy astrophysics, related in particular to the physics of accretion onto compact objects, to the acceleration of particles to the highest energies, and to the nature of the Cosmic X-Ray background. The mission, which has gone through a thorough assessment study performed by CNES, is expected to start a competitive phase A in autumn 2005, leading to a flight decision at the end of 2006, for a launch in 2012. The mission science objectives, the current status of the instrumentation and mission design, as well as potential trade-offs are presented in this paper.
The 10-100 keV region of the electromagnetic spectrum contains the potential for a dramatic improvement in our understanding of a number of key problems in high energy astrophysics. A deep inspection of the universe in this band is on the other hand still lacking because of the demanding sensitivity (fraction of μCrab in the 20-40 keV for 1 Ms integration time) and imaging (≈ 15" angular resolution) requirements. The mission ideas currently being proposed are based on long focal length, grazing incidence, multi-layer optics, coupled with focal plane detectors with few hundreds μm spatial resolution capability. The required large focal lengths, ranging between 8 and 50 m, can be realized by means of extendable optical benches (as foreseen e.g. for the HEXITSAT, NEXT and NuSTAR missions) or formation flight scenarios (e.g. Simbol-X and XEUS). While the final telescope design will require a detailed trade-off analysis between all the relevant parameters (focal length, plate scale value, angular resolution, field of view, detector size, and sensitivity degradation due to detector dead area and telescope vignetting), extreme attention must be dedicated to the background minimization. In this respect, key issues are represented by the passive baffling system, which in case of large focal lengths requires particular design assessments, and by the active/passive shielding geometries and materials. In this work, the result of a study of the expected background for a hard X-ray telescope is presented, and its implication on the required sensitivity, together with the possible implementation design concepts for active and passive shielding in the framework of future satellite missions, are discussed.
XMM-Newton was launched into space on a highly eccentric 48 hour orbit on December 10th 1999. XMM-Newton is now in its fifth year of operation and has been an outstanding success, observing the Cosmos with imaging, spectroscopy and timing capabilities in the X-ray and optical wavebands. The EPIC-MOS CCD X-ray detectors comprise two out of three of the focal plane instruments on XMM-Newton. In this paper we discuss key aspects of the current status and performance history of the charge transfer ineffiency (CTI), energy resolution and spectral redistribution function (rmf) of EPIC-MOS in its fifth year of operation.
Operating in the 0.5-70 keV energy range, Simbol-X is a next generation hard X-ray space mission proposed by a collaboration of
European laboratories for high energy astrophysics. Simbol-X will consist of two satellites flying in formation. In the first satellite, an X-ray mirror, having a focal length of 30 m, will focus the X-rays on the second satellite containing a silicon low energy detector on top of a Cd(Zn)Te (CZT) high energy detector. The latter consists of a mosaic of ~1 cm2 elementary arrays with 256 pixels (0.5x0.5 mm2). As a first step in the development, a prototype CZT detector of 10x10x2 mm3, having one side covered with 0.9x0.9 mm2 pixels, is used. A 3-D modeling is performed of the latter. The photon interaction inside the detector is simulated. The spatial distribution of the energy deposition and the amount of charge sharing of the pixels are obtained. The results serve as input parameters for the development and choice of the detector final geometry and electronics.
KEYWORDS: Sensors, Mirrors, Field effect transistors, Spatial resolution, Electrons, Space telescopes, Space operations, Telescopes, Hard x-rays, X-ray telescopes
SIMBOL-X is a hard X-ray mission, operating in the 0.5-70 keV range, which is proposed by a consortium of European laboratories for a launch around 2010. Relying on two spacecraft in a formation flying configuration, SIMBOL-X uses a 30 m focal length X-ray mirror to achieve an unprecedented angular resolution (30 arcsec HEW) and sensitivity (100 times better than INTEGRAL below 50 keV) in the hard X-ray range. SIMBOL-X will allow to elucidate fundamental questions in high energy astrophysics, such as the physics of accretion onto Black Holes, of acceleration in quasar jets and in supernovae remnants, or the nature of the hard X-ray diffuse emission. The scientific objectives and the baseline concepts of the mission and hardware design are presented.
We have analysed the tracks left by cosmic-ray particles on the CCDs of the EPIC-MOS cameras onboard XMM-Newton. These tracks could be entirely visualized by using a special operation test mode, and their characterization could be performed. This has allowed to measure the cosmic-ray flux at the level of the focal plane, as well as the fraction of the CCD surface which is sterilized by the cosmic-ray impacts. The relation between this fraction and parameters transmitted to the ground during normal observations has been established.
The XMM-Newton observatory has the largest collecting area flown so
far for an X-ray imaging system, resulting in a very high sensitivity
over a broad spectral range. In order to exploit fully these
performances, an accurate calibration of the XMM-Newton
instruments is required. This calibration is being continuously
updated, in order to refine the stable calibration parameters as well
as to account for the detector response changes induced by radiation damage. We report here on the current overall status of the EPIC/MOS cameras calibrations, and in particular on the recent work involving Charge Transfer Inefficiency evolution and recovery.
EPIC, on the Newton Observatory, comprises three CCD cameras that provide spectroscopic imaging over the band 0.1-12 keV, with full coverage of the 30' diameter field of view of the three telescopes. The combination of bandwidth, throughput, and spectral resolution, has produced many interesting observations in more than two years of operation. These range from stars, normal, and neutron, SNR & Pulsars, via galaxies, to clusters of galaxies and the most distant quasars. Some of the latest results will be presented. A few days' operation on orbit provides more instrument performance data that can be gathered in the most thorough ground calibration, and many new facets of the instrument performance become evident in orbit. The high throughput of the Newton telescopes provides images and spectra of high statistical precision. This puts an additional burden on the calibration, and there has been much progress by the EPIC team in defining a precise and accurate calibration at the few percent level. The EPIC MOS CCDs perform well in orbit and show considerable radiation hardness against soft protons, due to their peculiar architecture. The degradation of spectral resolution, due to radiation damage, is dominated by hard solar flare protons. At present, this is within the predicted limits and the good spectral performance of EPIC is maintained.
Ground calibrations have been completed in 1998 on the MOS-CCD focal planes of the European Photon Imaging Cameras (EPIC) of the X-ray Multi-Mirror (XMM) mission. The cameras have been calibrated as a whole, including the digital treatment performed in the EPIC MOS Controller (EMCR), where events are selected according to a library of preset patterns and some of their parameters saved for ground off line reconstruction. This paper presents results of the calibration data analysis about the X-ray event selection as a function of the EMCR configuration parameters and the X-ray event energy reconstruction on the pattern basis. Spectral performances of the cameras as well as the background rejection are presented as a function of the reconstruction scheme adopted.
The combined effective area of the three EPIC cameras of the XMM-Newton Observatory, offers the greatest collecting power ever deployed in an X-ray imaging system. The resulting potential for high sensitivity, broad-band spectroscopic investigations demands an accurate calibration. This work summarizes the initial in-orbit calibration activities that address these requirements. We highlight the first steps towards effective area determination, which includes the maintenance of gain CTI calibration to allow accurate energy determination. We discuss observations concerning the timing and count-rate capabilities of the detectors. Finally we note some performance implications of the optical blocking filters.
X-Ray Multi Mirror (XMM) satellite has been successfully launched on the 10th of December 1999. It is carrying 3 CCD detectors (2 MOS and 1 PN) optimized for X-Rays (EPIC instrument). These detectors have been calibrated using 2 synchrotron beam lines developed on purpose within the Institut d'Astrophysique Spatiale (IAS) and Laboratoire pour l'Utilisation du Rayonnement Electromagnetique (LURE) facilities in Orsay (France). The absolute calibration is performed by comparing the camera data with those obtained using a Gaz Proportional Counter for the 0.2 to 0.8 keV range and a Silicium-Lithium diode for the 0.6 to 12.0 keV range. These results are then to be compared to XMM in-flight calibration data.
The European Photon Imaging Camera (EPIC) is one of the major Instruments on board the X-ray Multi-Mirror (XMM) mission planned for launch in January 2000. Ground calibrations have been performed in 1997 and 1998 on the flight and spare models of the MOS-CCD focal plane cameras at the Orsay Synchrotron Facility at IAS in France. The calibration data takings have been completed in December 1998. Details of the calibration equipment have already been presented elsewhere and at the SPIE Annual Meeting. This paper is an overview of the calibration activities and present the status and result of the calibration data analysis.
The European photon imaging camera (EPIC) is one of the two main instruments onboard the ESA X-Ray Cornerstone Mission XMM. It is devoted to performing imaging and spectroscopy of the x-ray sky in the domain 0.1 10 keV with a peak sensitivity in 105 seconds of 2 multiplied by 10-15 erg/cm-2. The x-ray instrumentation is complemented by a radiation monitor which will measure the particle background. The spectral resolution is approximately 140 eV at 6.4 keV and 60 eV at 1 keV. The instrumentation consists of three separate focal plane cameras at the focus of the three XMM telescopes, containing CCDs passively cooled to typically minus 100 degrees via radiators pointing toward the anti-Sun direction. The two cameras with the field of view partially occulted by the RGS grating boxes will have MOS technology CCDs while the third camera, with full field of view, will be based on p-n technology. The CCDs in the focal plane of the cameras will cover the entire 30 foot by 30 foot field of view of the telescope while the pixel size (40 by 40 (mu) for the MOS camera and 150 multiplied by 150 (mu) for the p-n) will be adequate to sample the approximately 20' PSF of the mirrors. In order to cope with a wide range of sky background and source luminosity in the visible/UV band, a filter wheel with six positions has been implemented in each camera. The six positions correspond to: open position, closed position, one thin filter (1600 angstrom of plastic support and 400 angstrom of Al), one medium filter (1600 angstrom of plastic support and 800 angstrom of Al) and one thick filter (approximately 3000 angstrom of plastic support, approximately 1000 angstrom of Al and 300 Angstrom of Sn). The final position will be a redundant filter of type still to be decided. A set of radioactive sources in each camera will allow the calibration of the CCDs in any of the operating modes and with any filter wheel position. Vacuum doors and valves operated will allow the operation of other camera heads on the ground, in a vacuum chamber and/or in a controlled atmosphere, and will protect the CCDs from contamination until the spacecraft is safely in orbit. The MOS camera will have 7 CCDs, each of 600 by 600 pixels arranged in a hexagonal pattern with one central and six peripheral. The p-n camera head will have 12 CCDs, each with 200 multiplied by 64 pixels, in a rectangular arrangement, 4 quadrants of 3 CCDs each. The radiation monitor is based on two separate detectors to monitor the low (electrons greater than 30 keV) and the high (electrons greater than 200 keV and protons greater than 10 MeV) energy particles impinging on the telescope along its orbit.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.