Background: Natural physical phenomena occurring at length scales of a few nm produces variation in many aspects of the EUV photoresist relief image: edge roughness, width roughness, feature-tofeature variability, etc. 1,2,3,4. But the most damaging of these variations are stochastic or probabilistic printing failures 5, 6. Stochastic or probabilistic failures are highly random with respect to count and location and occur on wafers at spectra of unknown frequencies. Examples of these are space bridging, line breaking, missing and merging holes. Each has potential to damage or destroy the device, reducing yield 6, 10. Each has potential to damage or destroy the device, reducing yield 6, 10. The phenomena likely originates during exposure where quantized light and matter interact1 . EUV lithography is especially problematic since the uncertainty of energy absorbed by a volume of resist is much greater at 13.5 nm vs. 248 nm and 193 nm. Methods: In this paper, we use highly accelerated rigorous 3D probabilistic computational lithography and inspection to scan an entire EUV advanced node layout, predicting the location, type and probability of stochastic printing failures.
Metal oxide resists (MORs) have been becoming one of the most promising candidates that facilitates the extension of EUV single exposure by improving both lithographic resolution and etch selectivity. However, to succeed high volume manufacturing, the MORs process should be robust and persistent regardless of lithographic process fluctuation that might occur. In this work, the systematic examinations on the MORs process have been explored in order to understand the MORs patterning mechanism. We found that the ADI CD (After Development Inspection Critical Dimension) could be varied with trivial fluctuation of EUV radiation, humidity, and incomplete condensation reaction. In particular, the humidity around a coated resist was the important element that affected the condensation reaction and determined the insolubility of MORs against developer solution, which consequently defines the ADI CD. Thus, the methods that enable not only the moisture control but the sufficient condensation reaction were carefully examined. Moreover, it is investigated whether MORs can enhance further the etch selectivity while reducing the intrinsic resist defect. Several strategies have been implemented, which allow the CD variation to be reduced and the process window to be enlarged compared to the early stage MORs processes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.