The facility is compact (just 8 m x 14 m). Thanks to an innovative optical design based on an asymmetrical-cut crystal associated with a paraboloidal grazing incidence mirror, it can produce an expanded X-ray beam (170 mm x 60 mm) with low divergence (about 2 arcsec measured for the 4.51 keV beamline) at the two monochromatic energies of 4.51 keV and 1.49 keV. This allows us to calibrate each SPO MM's Effective Area and Point Spread Function precisely.
The first beamline, at 4.51 keV photon energy, is already operational, as the commissioning was completed in Q1-2023. The second beamline, at 1.49 keV energy, is being developed. It presents some more challenging aspects from both the design and implementation points of view. The monochromator stage is based on two Quartz (100); two ADP asymmetric-cut crystals (101) will provide the horizontal expansion of the beam. The X-ray source needs to be very brilliant (5 x 1011 - 1012 ph/s/sterad) due to the large fraction of photons rejected by the crystals.
This paper describes the ongoing activities. It will present the results of the 4.51 keV X-ray beamline optimization and the tests performed on a coated MM. It will also describe the progress in implementing the 1.49 keV components and discuss the comparison with other X-ray testing facilities.
The abbreviation “eXTP” represents the enhanced x-ray timing and polarimetry, which is a key science mission initiated by the Chinese scientists, designed to study the state of matter under extreme conditions of density, gravity and magnetism [1]. Various payloads would be on board of the satellite. The SFA, namely the spectroscopy focusing array, consisting of nine identical x-ray telescopes working in the energy range of 0.5-10 keV, will be the focus here [1]. SFA has a field-of-view of 12 arcmin for each and a collecting area of 900 cm2 and 550 cm2 for each at 2 keV and 6 keV respectively [1].
This paper starts with a brief introduction of the general optics, and then goes across some important design aspects. It covers contents from the structural and thermal designs to the CAE analyses as well as the current status. The large diameter and huge focal length of the optics will definitely bring big issues to the robustness of the carrying structure under the severe conditions given by the launcher.
According to the current design, the mirror assembly will have 3 feet and 24 spokes. Vibration tests were already performed on a few prototypes by IHEP, and a preliminary evaluation on the feasibility of the design has been achieved. It clearly stated that the current design with only a single spider can probably survive the vibration tests assuming a compromised test condition somewhere. CAE models were adjusted thereafter to match the test results, which could be used for further assessments in a near future.
Of course, there are always uncertainties associated with our arguments. More detailed prototypes with mechanically fully representative shells were still under design. Hopefully, highly reliable results could be retrieved soon.View contact details