Due to their increasingly complex 3D geometries, upcoming gate all around (GAA) devices pose new metrology challenges for which there is not yet any established HVM metrology solution, in particular for various critical timed etch steps [5]. Soft x-ray (SXR) scatterometry using 10-20 nm wavelength light is a promising next-generation metrology technique for 3D profile metrology and overlay (OVL) applications. This wavelength regime offers unique benefits over existing metrology techniques today: (1) Short wavelengths allow for higher resolution measurements than traditional visible wavelengths could offer, enabling measurement of structures at device pitches. (2) Primarily single scattering yields low correlation between parameters and aids physical interpretation of signals. This enables many parameters of interest to be extracted accurately and simultaneously. (3) SXR provides 3D capability, with stack heights up to 400 nm supported and high depth resolution due to the broadband source and sensor. These properties together make SXR suitable for measuring the 3D profiles of advanced devices such as gate all around (GAA) transistors, as well as after develop (ADI) overlay at device pitch. In this paper, we demonstrate SXR for profile metrology of GAA devices. We show sensitivity to average SiGe lateral recess etch depth as well as individual nanosheet critical dimensions, which cannot be reliably accessed by other nondestructive, inline metrology techniques available today. We furthermore demonstrate sensitivity in ADI OVL measurements directly on device-pitch structures in the presence of an underlying patterned nuisance layer.
Scanner matching based on CD or patterning contours has been demonstrated in past works. All of these published works require extensive wafer metrology. In contrast, this work extends a previously proposed optical pattern matching method that requires little metrology by adding the component requirements and the procedure for creating an automation flow. In a test case, we matched an ASML XT:1900i using a DOE to an ASML NXT:1950i scanner using FlexRay. The matching was conducted on a 4x nm process test layer as a development vehicle for the 2x nm product nodes. The paper summarizes the before and after matching data and analysis, with future opportunities for improvements suggested.
In this paper we describe the basic principle of FlexWave, a new high resolution
wavefront manipulator, and discuss experimental data on imaging, focus and overlay.
For this we integrated the FlexWave module in a 1.35 NA immersion scanner. With
FlexWave we can perform both static and dynamic wavefront corrections. Wavefront
control with FlexWave minimizes lens aberrations under high productivity usage of the
scanner, hence maintaining overlay and focus performance, but moreover, the high
resolution wavefront tuning can be used to compensate for litho related effects.
Especially now mask 3D effects are becoming a major error component, additional
tuning is required. Optimized wavefront can be achieved with computational lithography,
by either co-optimizing source, mask, and Wavefront Target prior to tape-out, or by
tuning Wavefront Targets for specific masks and scanners after the reticle is made.
Scanner matching based on wafer data has proven to be successful in the past years, but its adoption into production has
been hampered by the significant time and cost overhead involved in obtaining large amounts of statistically precise
wafer CD data. In this work, we explore the possibility of optical model based scanner matching that maximizes the use
of scanner metrology and design data and minimizes the reliance on wafer CD metrology.
A case study was conducted to match an ASML ArF immersion scanner to an ArF dry scanner for a 6Xnm technology
node. We used the traditional, resist model based matching method calibrated with extensive wafer CD measurements
and derived a baseline scanner manipulator adjustment recipe. We then compared this baseline scanner-matching recipe
to two other recipes that were obtained from the new, optical model based matching method. In the following sections,
we describe the implementation of both methods, provide their predicted and actual improvements after matching, and
compare the ratio of performance to the workload of the methods. The paper concludes with a set of recommendations
on the relative merits of each method for a variety of use cases.
As the industry drives to lower k1 imaging we commonly accept the use of higher NA imaging and advanced
illumination conditions. The advent of this technology shift has given rise to very exotic pupil spread functions that
have some areas of high thermal energy density creating new modeling and control challenges. Modern scanners are
equipped with advanced lens manipulators that introduce controlled adjustments of the lens elements to counteract the
lens aberrations existing in the system. However, there are some specific non-correctable aberration modes that are
detrimental to important structures. In this paper, we introduce a methodology for minimizing the impact of aberrations
for specific designs at hand. We employ computational lithography to analyze the design being imaged, and then devise
a lens manipulator control scheme aimed at optimizing the aberration level for the specific design. The optimization
scheme does not minimize the overall aberration, but directs the aberration control to optimize the imaging performance,
such as CD control or process window, for the target design. Through computational lithography, we can identify the
aberration modes that are most detrimental to the design, and also correlations between imaging responses of
independent aberration modes. Then an optimization algorithm is applied to determine how to use the lens manipulators
to drive the aberrations modes to levels that are best for the specified imaging performance metric achievable with the
tool. We show an example where this method is applied to an aggressive memory device imaged with an advanced ArF
scanner. We demonstrate with both simulation and experimental data that this application specific tool optimization
successfully compensated for the thermal induced aberrations dynamically, improving the imaging performance
consistently through the lot.
A top challenge for Photolithographers during a process transfer involving multiple-generation scanners is tool
matching. In a more general sense, the task is to ensure that the wafer printing results in the receiving fab will match or
even exceed those of the originating fab. In this paper we report on two strategies that we developed to perform a photo
process transfer that is tailored to the scanner's capabilities. The first strategy presented describes a method to match the
CD performance of the product features on the transferred scanner. A second strategy is then presented which considers
also the down-stream process tools and seeks to optimize the process for yield. Results presented include: ASML
TWINSCANTM XT:1700i and XT:1900i scanners 1D printing results from a line-space test reticle, parametric sensitivity
calculations for the two scanners on 1D patterns, simulation predictions for a process-optimized scanner-matching
procedure, and final wafer results on 2D production patterns. Effectiveness of the optimization strategies was then
concluded.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.