This will count as one of your downloads.
You will have access to both the presentation and article (if available).
This paper contains simulation results with the Siemens EDA Calibre tool and demonstrates theoretical proof that alternative mask materials bring significant gain when compared to the tantalum-based mask absorber. Firstly, we optimized the source and aerial image intensity threshold on a set of predefined clips (with SMO techniques). Secondly, we applied ILT techniques to correct for the full chip mask based on a horizontal layout of a metal logic layer on imec’s roadmap. We then compare the tantalum-based mask with the alternative masks using imaging criteria, such as DoF (depth of focus), NILS (Normalized Image log slope), EPE (edge placement error), pattern shifts through focus, process variation band, source telecentricity errors, and MEEF (mask error enhancement factor) on a variety of features in the metal logic clip to maximize the overall process window.
Using rigorous lithographic simulations, we screen potential single element absorber materials for their optical properties and their optimal thickness for minimum best focus variation through pitch at wafer level. In addition, the M3D mitigation by absorber material is evaluated by process window comparison of foundry N5 specific logic clips.
In order to validate the rigorous simulation predictions and to test the processing feasibility of the alternative absorber materials, we have selected the candidate single elements Nickel and Cobalt for an experimental evaluation on wafer substrates. In this work, we present the film characterization as well as first patterning tests of these single element candidate absorber materials.
High-order aberration measurement technique based on a quadratic Zernike model with optimized source
View contact details
No SPIE Account? Create one