This will count as one of your downloads.
You will have access to both the presentation and article (if available).
In this paper, we present two different Optical Proximity Correction (OPC) flows for Si-Photonics patterning. The first flow is regular model based OPC and the second one is based on Inverse Lithography Technology (ILT). The first OPC flow needs first to retarget the input layout while the ILT flow does support skew edges input by tool design and does not need any retargeting step before OPC. We will compare these two flows on various Si- Photonics waveguides from lithography quality, run time and MRC compliance of mask output. We will observe that ILT flow gives the best Edge Placement Error (EPE) and the lowest ripples along the devices. The ILT flow also takes into account the mask rules so that the generated mask is mask rule compliant (MRC). We will also discuss the silicon wafer data where Si-Photonics devices are printed within the two different OPC flows at process window conditions. Finally, for both OPC flows, we will present the total OPC run time which is acceptable in an industrial environment.
In this paper we present a hybrid OPC solution based on local ILT usage around hot spots. It is named as Local Printability Enhancement (LPE) flow. First, conventional OPC and SRAF placement is applied on the whole design. Then, we apply LPE solution only on the remaining problematic hot spots of the design. The LPE flow also takes into account the mask rules so that it maintains the mask rule check (MRC) compliance through the borders of the repaired hot spot’s areas. We will demonstrate that the LPE flow enlarges the process window around hot spots and gives better lithography quality than baseline. The simulation results are confirmed on silicon wafer where all the hot spots are printed. We will demonstrate that LPE flow enlarges the depth of focus of the most challenging hot spot by 30nm compared to POR conventional solution. Because the proposed flow applies ILT solution on very local hot spot areas, the total OPC run time remains acceptable from manufacturing side.
View contact details
No SPIE Account? Create one